Comparison of Electricity Generation Efficiencies depending on the Reactor Configurations in Microbial Fuel Cells

미생물 연료 전지의 반응조 형상에 따른 전기 생산효율 비교

  • Lee, Yunhee (Department of Railroad, Civil & Environmental Engineering, Woosong University) ;
  • Oa, Seong-Wook (Department of Railroad, Civil & Environmental Engineering, Woosong University)
  • 이윤희 (우송대학교 철도건설환경공학과) ;
  • 어성욱 (우송대학교 철도건설환경공학과)
  • Received : 2010.04.21
  • Accepted : 2010.05.12
  • Published : 2010.07.30

Abstract

Two different MFC designs were evaluated in batch mode: single compartment combined membrane-electrodes (SCME) design and twin-compartment brush-type anode electrodes (TBE) design (single chamber with two air cathodes and brush anodes at each side of the reactor). In SCME MFC, carbon anode and cathode electrodes were assembled with a proton exchange membrane (PEM). TBE MFC was consisted of brush-type anode and carbon cloth cathode electrodes without the PEM. A brush-type anode was fabricated with carbon fibers and was placed close to the cathode electrode to reduce the internal resistance. Substrates used in this study were glucose, leachate from cattle manure, or sucrose at different concentrations with phosphate buffer solution (PBS) of 200 mM to increase the conductivity thereby reduce the internal resistance. Hydrogen generating bacteria (HGB) were only inoculated in TBE MFC. The peak power densities ($P_{peak}$) produced from the SCME systems fed with glucose and leachate were 18.8 and $28.7mW/m^2$ at external loads of 1000 ohms, respectively. And the $P_{peak}$ produced from TBE MFC were 40.1 and $18.3mW/m^2$ at sucrose concentration of 5 g/L and external loads of 470 ohms, with a mediator (2-hydroxy-1, 4-naphthoquinone) and without the mediator, respectively. The maximum power density ($P_{max}$) produced from mediator present TBE MFC was $115.3mW/m^2$ at 47 ohms of an external resistor.

Keywords

References

  1. Bond, D. R. and Lovley, D. R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. and Environ. Microbol., 69(3), pp. 1548-1555. https://doi.org/10.1128/AEM.69.3.1548-1555.2003
  2. Cheng, S., Liu, H., and Logan, B. E. (2006). Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ. Sci. Technol., 40, pp. 2426-2432. https://doi.org/10.1021/es051652w
  3. Davila, D., Esquivel, J. P., Vigues, N., Sanchez, O., Garrido, L., Tomas, N., Sebate, N., Campo, F. J., Munoz, F. J., and Mas, J. (2008). Development and optimization of microbial fuel cell. J. of New Moterials for Electrochem. Systems, 11, pp. 99-103.
  4. Heijne, A. T., Hamelers, H. V. M., Wilde, V. D., Rozendal, R. A., and Buisman, C. J. N. (2006). A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ. Sci. Tech., 40, pp. 5200-5205. https://doi.org/10.1021/es0608545
  5. Heilmann, J. and Logan, B. E. (2006). Production of electricity from proteins using a microbial fuel cell. Water Environment Research, 78(5), pp. 531-537. https://doi.org/10.2175/106143005X73046
  6. Kim, B. H., Kim, H. J., Hyun, M. S., and Park, D. H. (1999). Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol., 9, pp. 127-131.
  7. Lee, Y. H., Khandan, N. N., and Oa, S. W. (2010). Bioelectricity production using microbial fuel cells in optimized configuration. Proceedings of IWA World water Congress and Exhibition, Montreal, Canada. (selected).
  8. Liu, H. and Logan, B. E. (2004 ). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol., 38, pp. 4040-4046. https://doi.org/10.1021/es0499344
  9. Liu, H., Ramnarayanan, R., and Logan, B. E. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol., 38, pp. 2281-2285. https://doi.org/10.1021/es034923g
  10. Logan, B. E., Cheng, S., Walson, V., and Estadt, G. (2007). Graphite fiber brush anodes for increased production in air-cathode microbial fuel cells. Environ. Sci. Technol., 41, pp. 3341-3346. https://doi.org/10.1021/es062644y
  11. Logan, B. E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., and Rabaey, K. (2006). Critical review- microbial fuel cells: methodology and technology. Environ. Sci. Technol., 40(17), pp. 5181-5192. https://doi.org/10.1021/es0605016
  12. Min, B., Cheng, S., and Logan, B. E. (2005). Electricity generation using membrane and salt bridge microbial fuel cells. Wat. Res., 39, pp. 1675-1686. https://doi.org/10.1016/j.watres.2005.02.002
  13. Min, B. and Logan, B. E. (2004). Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol., 38, pp. 5809-5814. https://doi.org/10.1021/es0491026
  14. Park, H. S., Kim, B. H., Kim, H. S., Kim, H. J., Kim, M., Chang, I. S., Park, Y. K. and Chang, H. I. (2001). A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium isolated from a microbial fuel cell. Anaerobe, 7, pp. 297-306. https://doi.org/10.1006/anae.2001.0399
  15. Picioreanu, C., Head, I. M., Katuri, K. P., Loosdrecht, M. C. M. V., and Scott, K. (2007). A computational model for biofilm - based microbial fuel cells. Water Research, 41, pp. 2921-2940. https://doi.org/10.1016/j.watres.2007.04.009
  16. Rabaey, K., Boon, N., Hofte, M., and Verstraete, W. (2005a). Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol., 39(9), pp. 3401-3408. https://doi.org/10.1021/es048563o
  17. Rabaey K., Boon, N., Siciliano, S. D., Verhaege, M., and Verstraete, W. (2004). Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol., 70, pp. 5373-5382. https://doi.org/10.1128/AEM.70.9.5373-5382.2004
  18. Rabaey, K., Clauwaert, P., Aelterman, P., and Verstraete, W. (2005b). Tubular microbial fuel cells for efficient electricity generation. Environ. Sci. Technol., 39(20), pp. 8077-8082. https://doi.org/10.1021/es050986i
  19. Rhoads, A., Beyenal, H., and Lewandowski, Z. (2005). Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol., 39(12), pp. 4666-4671. https://doi.org/10.1021/es048386r
  20. Ringeisen, B., Henderson, E., Wu, P. K., Pietron, J., Ray, R., Little, B., Biffinger, J. C., and Jones-meehan, J. M. (2006). High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ. Sci. Technol., 40, pp. 2629-2634. https://doi.org/10.1021/es052254w
  21. Schroder, U. (2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys., 9, pp. 2619-2629. https://doi.org/10.1039/b703627m
  22. Zhang, T., Cui, C., Chen, S., Ai, X., Yang, H., Shen, P., and Peng, Z. (2006). A novel mediatorless microbial fuel cell based on biocatelysis of Escherichia coli. Chem. Commun., pp. 2257-2259.
  23. Zhang, X and Helme, A. (1995). Modeling of microbial fuel cell process. Biotechnol. Lett., 17(8), pp. 809-814. https://doi.org/10.1007/BF00129009