References
- Bond, D. R. and Lovley, D. R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. and Environ. Microbol., 69(3), pp. 1548-1555. https://doi.org/10.1128/AEM.69.3.1548-1555.2003
- Cheng, S., Liu, H., and Logan, B. E. (2006). Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ. Sci. Technol., 40, pp. 2426-2432. https://doi.org/10.1021/es051652w
- Davila, D., Esquivel, J. P., Vigues, N., Sanchez, O., Garrido, L., Tomas, N., Sebate, N., Campo, F. J., Munoz, F. J., and Mas, J. (2008). Development and optimization of microbial fuel cell. J. of New Moterials for Electrochem. Systems, 11, pp. 99-103.
- Heijne, A. T., Hamelers, H. V. M., Wilde, V. D., Rozendal, R. A., and Buisman, C. J. N. (2006). A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ. Sci. Tech., 40, pp. 5200-5205. https://doi.org/10.1021/es0608545
- Heilmann, J. and Logan, B. E. (2006). Production of electricity from proteins using a microbial fuel cell. Water Environment Research, 78(5), pp. 531-537. https://doi.org/10.2175/106143005X73046
- Kim, B. H., Kim, H. J., Hyun, M. S., and Park, D. H. (1999). Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol., 9, pp. 127-131.
- Lee, Y. H., Khandan, N. N., and Oa, S. W. (2010). Bioelectricity production using microbial fuel cells in optimized configuration. Proceedings of IWA World water Congress and Exhibition, Montreal, Canada. (selected).
- Liu, H. and Logan, B. E. (2004 ). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol., 38, pp. 4040-4046. https://doi.org/10.1021/es0499344
- Liu, H., Ramnarayanan, R., and Logan, B. E. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol., 38, pp. 2281-2285. https://doi.org/10.1021/es034923g
- Logan, B. E., Cheng, S., Walson, V., and Estadt, G. (2007). Graphite fiber brush anodes for increased production in air-cathode microbial fuel cells. Environ. Sci. Technol., 41, pp. 3341-3346. https://doi.org/10.1021/es062644y
- Logan, B. E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., and Rabaey, K. (2006). Critical review- microbial fuel cells: methodology and technology. Environ. Sci. Technol., 40(17), pp. 5181-5192. https://doi.org/10.1021/es0605016
- Min, B., Cheng, S., and Logan, B. E. (2005). Electricity generation using membrane and salt bridge microbial fuel cells. Wat. Res., 39, pp. 1675-1686. https://doi.org/10.1016/j.watres.2005.02.002
- Min, B. and Logan, B. E. (2004). Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol., 38, pp. 5809-5814. https://doi.org/10.1021/es0491026
- Park, H. S., Kim, B. H., Kim, H. S., Kim, H. J., Kim, M., Chang, I. S., Park, Y. K. and Chang, H. I. (2001). A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium isolated from a microbial fuel cell. Anaerobe, 7, pp. 297-306. https://doi.org/10.1006/anae.2001.0399
- Picioreanu, C., Head, I. M., Katuri, K. P., Loosdrecht, M. C. M. V., and Scott, K. (2007). A computational model for biofilm - based microbial fuel cells. Water Research, 41, pp. 2921-2940. https://doi.org/10.1016/j.watres.2007.04.009
- Rabaey, K., Boon, N., Hofte, M., and Verstraete, W. (2005a). Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol., 39(9), pp. 3401-3408. https://doi.org/10.1021/es048563o
- Rabaey K., Boon, N., Siciliano, S. D., Verhaege, M., and Verstraete, W. (2004). Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol., 70, pp. 5373-5382. https://doi.org/10.1128/AEM.70.9.5373-5382.2004
- Rabaey, K., Clauwaert, P., Aelterman, P., and Verstraete, W. (2005b). Tubular microbial fuel cells for efficient electricity generation. Environ. Sci. Technol., 39(20), pp. 8077-8082. https://doi.org/10.1021/es050986i
- Rhoads, A., Beyenal, H., and Lewandowski, Z. (2005). Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol., 39(12), pp. 4666-4671. https://doi.org/10.1021/es048386r
- Ringeisen, B., Henderson, E., Wu, P. K., Pietron, J., Ray, R., Little, B., Biffinger, J. C., and Jones-meehan, J. M. (2006). High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ. Sci. Technol., 40, pp. 2629-2634. https://doi.org/10.1021/es052254w
- Schroder, U. (2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys., 9, pp. 2619-2629. https://doi.org/10.1039/b703627m
- Zhang, T., Cui, C., Chen, S., Ai, X., Yang, H., Shen, P., and Peng, Z. (2006). A novel mediatorless microbial fuel cell based on biocatelysis of Escherichia coli. Chem. Commun., pp. 2257-2259.
- Zhang, X and Helme, A. (1995). Modeling of microbial fuel cell process. Biotechnol. Lett., 17(8), pp. 809-814. https://doi.org/10.1007/BF00129009