Feasibility of Industrial by-products as a Seed Crystal of Struvite Crystallization for the Removal of Highly Concentrated Nitrogen and Phosphorus

고농도의 질소와 인제거를 위한 Struvite 정석반응의 정석재로서 산업부산물의 이용 가능성

  • Yim, Soo-Bin (Department of Environmental Engineering, Kyungsung University)
  • 임수빈 (경성대학교 환경공학과)
  • Received : 2010.04.13
  • Accepted : 2010.05.12
  • Published : 2010.07.30

Abstract

This study was performed to evaluate the feasibility of industrial by-products such as converter slag, olivine, red mud and fly ash as a seed crystal of struvite crystallization for the removal of highly concentrated $NH_4-N$ and $PO_4-P$. In the kinetic experiments, more than 90% of $NH_4-N$ and $PO_4-P$ was eliminated by struvite crystallization within 30 minutes of reaction time. The pH range in meta-stable region of struvite crystallization was found to be pH 7.0~9.0 under the Mg:N:P=1:1:1 equi-molar condition with 100 mg/L of $NH_4-N$. Total removal efficiencies of $NH_4-N$ and $PO_4-P$ by both struvite precipitation and crystallization were increased with the increase of pH. Removal efficiencies of $NH_4-N$ and $PO_4-P$ were significantly enhanced by struvite crystallization using industrial by-products as a seed crystal compared with those by struvite precipitation without seed crystal. Red mud, converter slag, olivine and fly ash enhanced the removal efficiencies of $NH_4-N$ by 40.9%, 37.7%, 28.4% and 16.4%, respectively. Removal efficiencies of $PO_4-P$ for converter slag, red mud, fly ash, olivine were increased by 3.7 times, 2.6 times, 72.4% and 68.0%, respectively. Converter slag and red mud showed higher feasibility as a seed crystal than others for the removal of highly concentrated $NH_4-N$ and $PO_4-P$. In particular, converter slag might have a high capacity of phosphorus removal.

Keywords

References

  1. 류홍덕, 민경국, 이상일(2002). Struvite 결정화 반응시 결정핵의 유무에 따른 결정화 효율 규명. 대한환경공학회지, 24, pp. 2203-2211.
  2. 원성연, 박승국, 이상일(2000). Struvite 결정화에 의한 질소 및 인의 제거. 대한환경공학회지, 22(4), pp. 599-601.
  3. 이흥수, 정세응, 최정규, 신상일 (2008). 소규모 생태연못(원홍이 방죽)의 부영향화 평가. 수질보전 한국물환경학회지, 24(6), pp. 741-749.
  4. Ali, M. I. (2001). Struvite crystallization in fed-batch pilot scale and description of solution chemistry of struvite. WTrans IChemE, Part A, Chemical Engineering Research and Design, 85, pp. 344-356.
  5. Ali, M. I. and Schneider, P. A. (2005). Crystallization of struvire from metastable region with different types of seed crystal. J. Non-Equilib. Thermodyn., 30, pp. 95-113. https://doi.org/10.1515/JNETDY.2005.007
  6. Ali, M. I. and Schnedier, P. A. (2006). A fed-batch design approach of struvite system in controlled supersaturation. Chem. Eng. Sci., 61, pp. 3951-3961. https://doi.org/10.1016/j.ces.2006.01.028
  7. Battistoni, P., Pavan, P., Cecchi, F., and Mata Alvarez. J. (2000). Struvite crystallization: a feasible and reliable way to fix phosphorus in anaerobic supernatants. Water Res., 34, pp. 3033-3041. https://doi.org/10.1016/S0043-1354(00)00045-2
  8. Booker, N. A., Priestley, A. J., and Fraser, I. H. (1999). Struvite formation in wastewater treatment plants: opportunities for nutrient recovery. Environ. Tech., 20, pp. 777-782. https://doi.org/10.1080/09593332008616874
  9. Bouropoulos, N. C. and Koutsoukos, P. G. (2000). Spontaneous precipitation of struvite from aqueous solutions. J. Crystal Growth, 213, pp. 381-388. https://doi.org/10.1016/S0022-0248(00)00351-1
  10. Doyle, J. D. and Parsons, S. A. (2002). Struvite formation, control and recovery. Water Res., 36, pp. 3925-3940. https://doi.org/10.1016/S0043-1354(02)00126-4
  11. Kim, D., Kim, J., Ryu, H. D., and Lee, S. I. (2009). Effect of mixing on spontaneous struvite precipitation from semiconductor wastewater. Biores. Tech., 100, pp. 74-78. https://doi.org/10.1016/j.biortech.2008.05.024
  12. Kim, E. H., Hwang, H. K., and Yim, S. B. (2006). Phosphorus removal characteristics in hydroxyapatite crystallization using converter slag. J. Envion. Sci. & Health Part A, 41, pp. 2531-2545. https://doi.org/10.1080/10934520600927740
  13. Mullin, J. W. (1993). Crystallization, 3rd edition, Butterworth-Heinnemann, Ipswich, UK.
  14. Ohlinger, K. N., Young, T, M., and Schroeder, E. D. (1998). Predicting struvite formation in digestion. Water Res., 14, pp. 1695-1703.
  15. Perez Rodriguez, J. L., Maqueda, C., Lebraro, J., and Carretero, M. I. (1992). Influence of clay minerals, used as supports in anaerobic digesters, in the precipitation of struvite. Water Res., 26, pp. 497-506. https://doi.org/10.1016/0043-1354(92)90051-5
  16. Stratful, S., Brett, S., Scrimshaw, M. B., and Lester, J. N. (1999). Biological phosphorus removal. its role in phosphcrus recycling. Environ. Tech., 20, pp. 681-696. https://doi.org/10.1080/09593332008616863
  17. Wang, J., Burken, J. G., and Zhang, X. Q. (2006). Effect of seeding materials and mixing strength on struvite precipitation. Water Environ. Res., 78, pp. 125-132. https://doi.org/10.2175/106143005X89580
  18. Yim, S. and Kim, E. H. (2004). A comparative study of seed crystals for the phosphorus crystallization process. Environ. Tech., 25 , pp. 741-750. https://doi.org/10.1080/09593330.2004.9619364