References
- 교육과학기술부(2008). 국가나노기술지도.
-
Adams, L. K., Lyon, D. Y., McIntosh, A., and Alvarez, P. J. (2006). Comparative toxicity of nano-scale
$TiO_2$ ,$SiO_2$ , and ZnO water suspensions. Water Sci. Technol., 54, pp. 327-334. https://doi.org/10.2166/wst.2006.891 -
Aruoja. V., Dubourguier, H.-C., Kasemets, K., and Kahru, A. (2009). Toxicity of nanoparticles of CuO, ZnO and
$TiO_2$ to microalgae Pseudokirchnerieila subcapitata. Sci. Total Environ., 407, pp. 1461-1468. https://doi.org/10.1016/j.scitotenv.2008.10.053 - Asharani, P. V., Wu, Y. L., Gong, Z., and Valiyaveettil, S. (2008). Toxicity of silver nanoparticles in zebrafish models. Nonotechnology, doi:10.1088/0957-4484/19/25/255102
- Bai, W., Zhang, Z., Tian. W., He, X., Ma, Y., Zhao, Y., and Chai, Z. (2009). Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J. Nonopart. Res., DOI 10.1007/s11051-0099740-9.
- Bar-Ilan, O., Albercht, R. M., Fake, V. E., and Furgeson, D. Y. (2009). Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small, 5(16), pp. 1897-1910. https://doi.org/10.1002/smll.200801716
- Baun, A., Sorensen, S. N., Rasmussen, R. F., Hartmann, N. B., and Koch, C. B. (2008). Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquatic Toxtcol., 86, pp. 379-387. https://doi.org/10.1016/j.aquatox.2007.11.019
- Blickley, T. M. and McClellan-Green, P. (2008). Toxicity of aqueous fullerene in adult and larval Fundulus heteroclitus. Environ. Toxicol. Chem., 27, pp. 1964-1971. https://doi.org/10.1897/07-632.1
- Bouldin, J. L., Ingle, T. M., Sengupta, A., Alexander, R., Hannigan, R. E., and Buchanan, R. A. (2008). Aqueous toxicity and food chain transfer of quantum dots in freshwater algae and Ceriodaphnia dubio. Environ. Toxicol. Chem., 27(9), pp. 1958-1963. https://doi.org/10.1897/07-637.1
- Brunner, T. J., Wick, P., Manser, P., Spohn, P., Grass, R. N., Limbach, L. K., Bruinink, A., and Stark, W. J. (2006). In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol., 40(14), pp. 4374-4381. https://doi.org/10.1021/es052069i
- Chae. Y. J., Pham, C. H., Lee, J., Bae, E., Yi, J., and Gu, M. B. (2009). Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquatic Toxicol., 94. pp. 320-327. https://doi.org/10.1016/j.aquatox.2009.07.019
- Cheng, J., Flahaut, E., and Cheng, S. H. (2007). Effect of carbon nanotubes on developing zebrafish (Dania rerio) embryos. Environ. Toxicol. Chem., 26(4), pp. 708-716. https://doi.org/10.1897/06-272R.1
- Dhawan, A., Taurozzi. J. S., Pandey, A. K., Shan, W.. Miller, S. M., Hashsham. S. A., and Tarabara. V. V. (2006). Stable colloidal dispersions of C60 fullerenes in water: Evidence for genotoxicity. Environ. Sci. Technol., 40(23), pp. 7394-7401. https://doi.org/10.1021/es0609708
- Fujiwara, K., Suematsu, H., Klycmiya, E., Aoki, M., Seto, M., and Moritoki, N. (2008). Size-dependent toxicity of silica nano-particles to Chiarella kessleri. J. Environ. Sci. Health A, 43, pp. 1161-1173.
- Gaiser, B. K., Fernandes. T. F., Jepson. M., Lead, J. R., Tyler. C. R., and Stone, V. (2009). Assessing exposure, uptake, and toxicity, of silver and cerium dioxide nanoparticles from contaminated environments. Environ. Health, doi:10.1186/1476-069X-8-S1-S2
- Griffitt. R. J., Luo, J., Gao, J., Bonzongo, J.-C., and Barber, D. S. (2008). Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem., 27(9), pp. 1972-1978. https://doi.org/10.1897/08-002.1
- Griffitt, R. J., Weil, R., Hyndman, K. A., Denslow, N. D., Powers, K., Taylor, D., and Barber, D. S. (2007). Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ. Sci. Technol., 41, pp. 8178-8186. https://doi.org/10.1021/es071235e
-
Hall, S., Bradley, T., Moore, J. T., Kuykindall, T., and Minella, L. (2009). Acute and chronic toxicity of nanoscale
$TiO_2$ particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on$TiO_2$ toxicity. Nanotoxicology, 1, pp. 1-7. - Heiden, T. C. K., Dengler, E., Kao, W. J., Heideman. W., and Peterson, R. E. (2007). Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol. Appl. Pharm., 225, pp. 70-79. https://doi.org/10.1016/j.taap.2007.07.009
-
Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.-C., and Kahru, A. (2008). Toxicity of nanosized and bulk Zno, CuO and
$TiO_2$ to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71, pp. 1308-1316. https://doi.org/10.1016/j.chemosphere.2007.11.047 - Henry, B. T., Menn, F.-M., Fleming, J. T., Wilgus, J., Compton, R. N., and Sayler, G. S. (2007). Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression. Environ. Health Persp., 115(7), pp. 1059-1065. https://doi.org/10.1289/ehp.9757
- Hoet, P. H. M., Bruske-Hohlfeld, I., and Salata, O. V. (2004). Nanoparticles-known and unknown health risks. J. Nanotechnol., 2(12), pp. 1-15. doi:10.118611477-3155-2-12.
- Hull, M. S., Kennedy, A. J., Steevens, J. A., Bednar, A. J., Weiss, C. A., and Vikesland, P. J. (2009). Release of metal impurities from carbon nanomaterials influences aquatic toxicity. Environ. Sci. Technol., 43, pp. 4169-4174. https://doi.org/10.1021/es802483p
-
Hund-Rinke, K. and Simon, M. (2006). Ecotoxic Effect of Photocatalytic Active Nanoparticles (
$TiO_2$ ) on Algae and Daphnids. Environ. Sci. Pollut. Res., 1, pp. 1-8. - Ingle, T. M., Alexander, R., Bouldin, J., and Buchanam, R. A. (2008). Absorption of semiconductor nenocrystals by the aquatic invertbrate Ceriodaphnia dubia. Bull. Environ. Contam. Toxicol., 81, pp. 249-252. https://doi.org/10.1007/s00128-008-9481-y
- Kashiwada, S. (2006). Distribution of nanoparticles in the see-through medaka (Oryzias lalipes), Environ. Health Persp., 114(11), pp. 1697-1702.
- Kennedy, A. J., Hull, M. S., Steeverns, J. A., Dontsova, K. M., Chappell, M. A., Gunter, J. C., and Weiss, C. A. (2008). Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environ. Toxicol. Chem., 27(9), pp. 1932-1941. https://doi.org/10.1897/07-624.1
- King-Heiden, T. C., Wiecinski, P. N., Mangham. A. N., Metz, K. M., Nesbit, D., Pedersen, J. A., Hamers, R. J., Heideman, W., and Peterson, R. E. (2009). Quantum dot nanotoxicity assessment using the zebrafish embryo. Environ. Sci. Technol., 43, pp. 1605-1611. https://doi.org/10.1021/es801925c
- Laban, G., Nies, L. F., Turco, R. F., Bickham, J. W., and Sepulveda, M. S. (2010). The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology, 19, pp. 185-195. https://doi.org/10.1007/s10646-009-0404-4
- Lee, K. J., Nallathamby, P. D., Browning, L. M., Osgood, C. J., and Xu, X.-H. N. (2007). In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos. ACS Nano, 1(2), pp. 133-143. https://doi.org/10.1021/nn700048y
- Lee, S.-W., Kim, S.-M., and Choi, J. (2009). Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure. Environ. Toxicol. Pharmacol., 28, pp. 86-91. https://doi.org/10.1016/j.etap.2009.03.001
- Lee, W.-M., An, Y.-J., Yoon, H., and Kwon, J.-S. (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environ. Toxicol. Chem., 27(9), pp. 1915-1921. https://doi.org/10.1897/07-481.1
- Li, H., Zhang, J., Wang, T., Luo, W., Zhou, Q., and Jiang, G. (2008). Elemental selenium paritlces at nano-size (nano-Se) are more toxic to Medaka (O. latipes) as a consequence of hyper-accumulation of selenium: A comparison with sodium selenite. Aquatic Toxicol., 89, pp. 251-256. https://doi.org/10.1016/j.aquatox.2008.07.008
- Li, H., Zhou, Q., Wu, Y., Fu, J., Wang, T., and Jiang, G. (2009). Effects of waterborne nano-iron on medaka (Oryzias latipes): Antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol. Environ. Safety, 72, pp. 684-692. https://doi.org/10.1016/j.ecoenv.2008.09.027
- Lin, D. and Xing, B. (2007). Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut., 150(2), pp. 243-250. https://doi.org/10.1016/j.envpol.2007.01.016
- Lovern, S. and Klaper, R. (2006). Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ. Toxicol. Chem., 25(4), pp. 1132-1137. https://doi.org/10.1897/05-278R.1
- Lovern, S. B., Owen, H. A., and Klaper, R. (2008). Electron microscopy of gold nanoparticle intake in the gut of Daphnia magna. Nanotoxicology, 2(1), pp.43-48. https://doi.org/10.1080/17435390801935960
- Lovern, S. B., Strickler, J. R., and Klaper, R. (2007). Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (Titanium Dioxide, Nano-C60, and C60HxC70Hx). Environ. Sci. Technol., 41, pp. 4465-4470. https://doi.org/10.1021/es062146p
- Lyon, D. Y., Adams, L. K., Falkner, J. C., and Alvarez, P. J. J. (2006). Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environ. Sci. Technol., 40(14), pp. 4360-4366. https://doi.org/10.1021/es0603655
- Moore, M. N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int., 32(8), pp. 967-976. https://doi.org/10.1016/j.envint.2006.06.014
- Naha, P. C., Casey, A., Tenuta, T., Lynch, I., Dawson. K. A., Byrne, H. J., and Devoren, M. (2009). Preparation, characterization of NIPAM and NIPAM/BAM copolymer. Aquatic Toxicol., 92, pp. 146-154. https://doi.org/10.1016/j.aquatox.2009.02.001
- Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Sigg, L., and Behra, R. (2008). Toxicity of Silver Nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol., 42, pp. 8959-8964. https://doi.org/10.1021/es801785m
- Nel, A., Xia, T., Madler, L., and Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), pp. 622-627. https://doi.org/10.1126/science.1114397
- Oberdorster, E. (2004). Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile large-mouth bass. Environ. Health Persp., 112(10), pp. 1058-1062. https://doi.org/10.1289/ehp.7021
- Oberdorster, E., Zhu, S., Blickley, T. M., McClellan-Green, P., and Haasch, M. L. (2006). Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms. Carbon, 44, pp. 1112-1120. https://doi.org/10.1016/j.carbon.2005.11.008
- Roberts, A. P., Mount, A. S., Seda, B., Souther, J., Qiao, R., Lin, S., Ke, P., Rao, A. M., and Klaine, S. J. (2007). In vivo biomodification of lipid-coated nanotubes by Daphnia magna. Environ. Sci. Technol., 41. pp. 3025-3029. https://doi.org/10.1021/es062572a
- Smith, C. J., Shaw, B. J., and Handy, R. D. (2007). Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquatic Toxicol., 82, pp. 94-109. https://doi.org/10.1016/j.aquatox.2007.02.003
- Tao, X., Fortner, J. D., Zhang, B., He, Y., Chen, Y., and Hughes, J. B. (2009). Effect of aqueous stable fulleren nanocrystals (nC60) on Dophnia magna: Evaluation of sublethal reproductive responses and accumulation. Chemosphere, 77, pp. 1482-1487. https://doi.org/10.1016/j.chemosphere.2009.10.027
- UBA(Umwelt Bundes Amt)(2006). Nanotechnology: Opportunities and risks for humans and the environment.
- Usenko, C. Y., Harper, S. L., and Tanguay, R. L. (2007). In vivo evaluation of earbon fullerene toxicity using embryo zebrafish. Carbon, 45, pp. 1891-1898. https://doi.org/10.1016/j.carbon.2007.04.021
- Van Hoecke, K., De Schamphelaere, K. A., Van der Meeren, P., Lucas, S., and Janssen, C. R. (2008). Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: importance of surface area. Environ. Toxicol. Chem., 27(9), pp. 1948-1957. https://doi.org/10.1897/07-634.1
-
Wiench, K., Woblleben, W., Hisgen, V., Radke, K., Salinas, E., Zok, S., and Landsiedel, R. (2009). Acute and chronic effects of nano- and non-nano-scale
$TiO_2$ and ZnO particles on mobilily and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere, 76, pp. 1356-1365. https://doi.org/10.1016/j.chemosphere.2009.06.025 - Yang, L. and Walls, D. J. (2005 ). Particle surface characteristics may play an importanl role in phytotoxieiry of alumina nanoparticles. Toxicol. Lett., 158, pp. 122-132. https://doi.org/10.1016/j.toxlet.2005.03.003
- Zhang, X., Sun, H., Zhang, Z., Niu, Q., Chen, Y., and Crittenden, J. C. (2007). Enhanced bioaccumutation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere, 67(1), pp. 160-166. https://doi.org/10.1016/j.chemosphere.2006.09.003
- Zhu, S., Oberdorster, E., and Haasch, M. L. (2006). Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Marine Environ. Res., 62, pp. S5-S9. https://doi.org/10.1016/j.marenvres.2006.04.059
- Zhu, X., Wang, J., Zhang, X., Chang, Y., and Chen, Y. (2009a). The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology, doi:10.1088/0957-4484/20/19/195103.
- Zhu, X., Zhu, L., Cben, Y., and Tian, S. (2009b). Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J. Nanopart. Res., 11, pp. 67-75. https://doi.org/10.1007/s11051-008-9426-8
- Zhu, X., Zhu, L., Duan, Z., Qi, R., Li, Y., and Lang, Y. (2008a). Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J. Environ. Sci. Health A, 43(3), pp. 278-284. https://doi.org/10.1080/10934520701792779
- Zhu, X., Zhu, L., Lang, Y., and Chen, Y. (2008b). Oxidative stress and growth inhibition in the freshwater fish Carassius auratus induced by chronic exposure to sublethal fullerene aggregates. Environ. Toxicol. Chem., 27(9), pp. 1979-1985. https://doi.org/10.1897/07-573.1
- Zhu, X., Zhu, L., Li, Y., Duan, Z., Chen, W., and Alvarez, P. J. J. (2007). Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomateriala: buckminsterfullerene aggregates (nC60) and fullerol. Environ. Toxicol. Chem., 26(5), pp. 976-979. https://doi.org/10.1897/06-583.1