Research Trends of Ecotoxicity of Nanoparticles in Water Environment

수환경에서 나노입자의 생태독성 연구동향

  • Lee, Woo-Mi (Department of Environmental Science, Konkuk University) ;
  • An, Youn-Joo (Department of Environmental Science, Konkuk University)
  • 이우미 (건국대학교 환경과학과) ;
  • 안윤주 (건국대학교 환경과학과)
  • Received : 2010.02.25
  • Accepted : 2010.05.04
  • Published : 2010.07.30

Abstract

Nanotechnology has been applied to various fields in our life. Although there is a limitation of nanoparticle monitoring so far, it is expected that nanoparticles are widely distributed in environmental multimedia. Nanoparticle is known to be more toxic than its corresponding bulk material. For this reason, developed countries and international organizations are preparing for future regulation. To evaluate the safety of nanoparticles, nanotoxicity studies are internationally underway. In this study, we evaluated the research trends of ecotoxicity of nanoparticles in water environment. Test species include fish, water flea, and algae. Nanoecotoxicological studies are rapidly increasing and the experimental designs become more sophisticated. Physicochemical properties of nanoparticles should be measured and the ionization potential is important for metal-based nanoparticles. We analyzed the research trends based on the type of nanoparticles and test species. Also experimental aspects of nanoecotoxicology are considered.

Keywords

References

  1. 교육과학기술부(2008). 국가나노기술지도.
  2. Adams, L. K., Lyon, D. Y., McIntosh, A., and Alvarez, P. J. (2006). Comparative toxicity of nano-scale $TiO_2$, $SiO_2$, and ZnO water suspensions. Water Sci. Technol., 54, pp. 327-334. https://doi.org/10.2166/wst.2006.891
  3. Aruoja. V., Dubourguier, H.-C., Kasemets, K., and Kahru, A. (2009). Toxicity of nanoparticles of CuO, ZnO and $TiO_2$ to microalgae Pseudokirchnerieila subcapitata. Sci. Total Environ., 407, pp. 1461-1468. https://doi.org/10.1016/j.scitotenv.2008.10.053
  4. Asharani, P. V., Wu, Y. L., Gong, Z., and Valiyaveettil, S. (2008). Toxicity of silver nanoparticles in zebrafish models. Nonotechnology, doi:10.1088/0957-4484/19/25/255102
  5. Bai, W., Zhang, Z., Tian. W., He, X., Ma, Y., Zhao, Y., and Chai, Z. (2009). Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J. Nonopart. Res., DOI 10.1007/s11051-0099740-9.
  6. Bar-Ilan, O., Albercht, R. M., Fake, V. E., and Furgeson, D. Y. (2009). Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small, 5(16), pp. 1897-1910. https://doi.org/10.1002/smll.200801716
  7. Baun, A., Sorensen, S. N., Rasmussen, R. F., Hartmann, N. B., and Koch, C. B. (2008). Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquatic Toxtcol., 86, pp. 379-387. https://doi.org/10.1016/j.aquatox.2007.11.019
  8. Blickley, T. M. and McClellan-Green, P. (2008). Toxicity of aqueous fullerene in adult and larval Fundulus heteroclitus. Environ. Toxicol. Chem., 27, pp. 1964-1971. https://doi.org/10.1897/07-632.1
  9. Bouldin, J. L., Ingle, T. M., Sengupta, A., Alexander, R., Hannigan, R. E., and Buchanan, R. A. (2008). Aqueous toxicity and food chain transfer of quantum dots in freshwater algae and Ceriodaphnia dubio. Environ. Toxicol. Chem., 27(9), pp. 1958-1963. https://doi.org/10.1897/07-637.1
  10. Brunner, T. J., Wick, P., Manser, P., Spohn, P., Grass, R. N., Limbach, L. K., Bruinink, A., and Stark, W. J. (2006). In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol., 40(14), pp. 4374-4381. https://doi.org/10.1021/es052069i
  11. Chae. Y. J., Pham, C. H., Lee, J., Bae, E., Yi, J., and Gu, M. B. (2009). Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquatic Toxicol., 94. pp. 320-327. https://doi.org/10.1016/j.aquatox.2009.07.019
  12. Cheng, J., Flahaut, E., and Cheng, S. H. (2007). Effect of carbon nanotubes on developing zebrafish (Dania rerio) embryos. Environ. Toxicol. Chem., 26(4), pp. 708-716. https://doi.org/10.1897/06-272R.1
  13. Dhawan, A., Taurozzi. J. S., Pandey, A. K., Shan, W.. Miller, S. M., Hashsham. S. A., and Tarabara. V. V. (2006). Stable colloidal dispersions of C60 fullerenes in water: Evidence for genotoxicity. Environ. Sci. Technol., 40(23), pp. 7394-7401. https://doi.org/10.1021/es0609708
  14. Fujiwara, K., Suematsu, H., Klycmiya, E., Aoki, M., Seto, M., and Moritoki, N. (2008). Size-dependent toxicity of silica nano-particles to Chiarella kessleri. J. Environ. Sci. Health A, 43, pp. 1161-1173.
  15. Gaiser, B. K., Fernandes. T. F., Jepson. M., Lead, J. R., Tyler. C. R., and Stone, V. (2009). Assessing exposure, uptake, and toxicity, of silver and cerium dioxide nanoparticles from contaminated environments. Environ. Health, doi:10.1186/1476-069X-8-S1-S2
  16. Griffitt. R. J., Luo, J., Gao, J., Bonzongo, J.-C., and Barber, D. S. (2008). Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem., 27(9), pp. 1972-1978. https://doi.org/10.1897/08-002.1
  17. Griffitt, R. J., Weil, R., Hyndman, K. A., Denslow, N. D., Powers, K., Taylor, D., and Barber, D. S. (2007). Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ. Sci. Technol., 41, pp. 8178-8186. https://doi.org/10.1021/es071235e
  18. Hall, S., Bradley, T., Moore, J. T., Kuykindall, T., and Minella, L. (2009). Acute and chronic toxicity of nanoscale $TiO_2$ particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on $TiO_2$ toxicity. Nanotoxicology, 1, pp. 1-7.
  19. Heiden, T. C. K., Dengler, E., Kao, W. J., Heideman. W., and Peterson, R. E. (2007). Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol. Appl. Pharm., 225, pp. 70-79. https://doi.org/10.1016/j.taap.2007.07.009
  20. Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.-C., and Kahru, A. (2008). Toxicity of nanosized and bulk Zno, CuO and $TiO_2$ to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71, pp. 1308-1316. https://doi.org/10.1016/j.chemosphere.2007.11.047
  21. Henry, B. T., Menn, F.-M., Fleming, J. T., Wilgus, J., Compton, R. N., and Sayler, G. S. (2007). Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression. Environ. Health Persp., 115(7), pp. 1059-1065. https://doi.org/10.1289/ehp.9757
  22. Hoet, P. H. M., Bruske-Hohlfeld, I., and Salata, O. V. (2004). Nanoparticles-known and unknown health risks. J. Nanotechnol., 2(12), pp. 1-15. doi:10.118611477-3155-2-12.
  23. Hull, M. S., Kennedy, A. J., Steevens, J. A., Bednar, A. J., Weiss, C. A., and Vikesland, P. J. (2009). Release of metal impurities from carbon nanomaterials influences aquatic toxicity. Environ. Sci. Technol., 43, pp. 4169-4174. https://doi.org/10.1021/es802483p
  24. Hund-Rinke, K. and Simon, M. (2006). Ecotoxic Effect of Photocatalytic Active Nanoparticles ($TiO_2$) on Algae and Daphnids. Environ. Sci. Pollut. Res., 1, pp. 1-8.
  25. Ingle, T. M., Alexander, R., Bouldin, J., and Buchanam, R. A. (2008). Absorption of semiconductor nenocrystals by the aquatic invertbrate Ceriodaphnia dubia. Bull. Environ. Contam. Toxicol., 81, pp. 249-252. https://doi.org/10.1007/s00128-008-9481-y
  26. Kashiwada, S. (2006). Distribution of nanoparticles in the see-through medaka (Oryzias lalipes), Environ. Health Persp., 114(11), pp. 1697-1702.
  27. Kennedy, A. J., Hull, M. S., Steeverns, J. A., Dontsova, K. M., Chappell, M. A., Gunter, J. C., and Weiss, C. A. (2008). Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environ. Toxicol. Chem., 27(9), pp. 1932-1941. https://doi.org/10.1897/07-624.1
  28. King-Heiden, T. C., Wiecinski, P. N., Mangham. A. N., Metz, K. M., Nesbit, D., Pedersen, J. A., Hamers, R. J., Heideman, W., and Peterson, R. E. (2009). Quantum dot nanotoxicity assessment using the zebrafish embryo. Environ. Sci. Technol., 43, pp. 1605-1611. https://doi.org/10.1021/es801925c
  29. Laban, G., Nies, L. F., Turco, R. F., Bickham, J. W., and Sepulveda, M. S. (2010). The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology, 19, pp. 185-195. https://doi.org/10.1007/s10646-009-0404-4
  30. Lee, K. J., Nallathamby, P. D., Browning, L. M., Osgood, C. J., and Xu, X.-H. N. (2007). In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos. ACS Nano, 1(2), pp. 133-143. https://doi.org/10.1021/nn700048y
  31. Lee, S.-W., Kim, S.-M., and Choi, J. (2009). Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure. Environ. Toxicol. Pharmacol., 28, pp. 86-91. https://doi.org/10.1016/j.etap.2009.03.001
  32. Lee, W.-M., An, Y.-J., Yoon, H., and Kwon, J.-S. (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environ. Toxicol. Chem., 27(9), pp. 1915-1921. https://doi.org/10.1897/07-481.1
  33. Li, H., Zhang, J., Wang, T., Luo, W., Zhou, Q., and Jiang, G. (2008). Elemental selenium paritlces at nano-size (nano-Se) are more toxic to Medaka (O. latipes) as a consequence of hyper-accumulation of selenium: A comparison with sodium selenite. Aquatic Toxicol., 89, pp. 251-256. https://doi.org/10.1016/j.aquatox.2008.07.008
  34. Li, H., Zhou, Q., Wu, Y., Fu, J., Wang, T., and Jiang, G. (2009). Effects of waterborne nano-iron on medaka (Oryzias latipes): Antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol. Environ. Safety, 72, pp. 684-692. https://doi.org/10.1016/j.ecoenv.2008.09.027
  35. Lin, D. and Xing, B. (2007). Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut., 150(2), pp. 243-250. https://doi.org/10.1016/j.envpol.2007.01.016
  36. Lovern, S. and Klaper, R. (2006). Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ. Toxicol. Chem., 25(4), pp. 1132-1137. https://doi.org/10.1897/05-278R.1
  37. Lovern, S. B., Owen, H. A., and Klaper, R. (2008). Electron microscopy of gold nanoparticle intake in the gut of Daphnia magna. Nanotoxicology, 2(1), pp.43-48. https://doi.org/10.1080/17435390801935960
  38. Lovern, S. B., Strickler, J. R., and Klaper, R. (2007). Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (Titanium Dioxide, Nano-C60, and C60HxC70Hx). Environ. Sci. Technol., 41, pp. 4465-4470. https://doi.org/10.1021/es062146p
  39. Lyon, D. Y., Adams, L. K., Falkner, J. C., and Alvarez, P. J. J. (2006). Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environ. Sci. Technol., 40(14), pp. 4360-4366. https://doi.org/10.1021/es0603655
  40. Moore, M. N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int., 32(8), pp. 967-976. https://doi.org/10.1016/j.envint.2006.06.014
  41. Naha, P. C., Casey, A., Tenuta, T., Lynch, I., Dawson. K. A., Byrne, H. J., and Devoren, M. (2009). Preparation, characterization of NIPAM and NIPAM/BAM copolymer. Aquatic Toxicol., 92, pp. 146-154. https://doi.org/10.1016/j.aquatox.2009.02.001
  42. Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Sigg, L., and Behra, R. (2008). Toxicity of Silver Nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol., 42, pp. 8959-8964. https://doi.org/10.1021/es801785m
  43. Nel, A., Xia, T., Madler, L., and Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), pp. 622-627. https://doi.org/10.1126/science.1114397
  44. Oberdorster, E. (2004). Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile large-mouth bass. Environ. Health Persp., 112(10), pp. 1058-1062. https://doi.org/10.1289/ehp.7021
  45. Oberdorster, E., Zhu, S., Blickley, T. M., McClellan-Green, P., and Haasch, M. L. (2006). Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms. Carbon, 44, pp. 1112-1120. https://doi.org/10.1016/j.carbon.2005.11.008
  46. Roberts, A. P., Mount, A. S., Seda, B., Souther, J., Qiao, R., Lin, S., Ke, P., Rao, A. M., and Klaine, S. J. (2007). In vivo biomodification of lipid-coated nanotubes by Daphnia magna. Environ. Sci. Technol., 41. pp. 3025-3029. https://doi.org/10.1021/es062572a
  47. Smith, C. J., Shaw, B. J., and Handy, R. D. (2007). Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquatic Toxicol., 82, pp. 94-109. https://doi.org/10.1016/j.aquatox.2007.02.003
  48. Tao, X., Fortner, J. D., Zhang, B., He, Y., Chen, Y., and Hughes, J. B. (2009). Effect of aqueous stable fulleren nanocrystals (nC60) on Dophnia magna: Evaluation of sublethal reproductive responses and accumulation. Chemosphere, 77, pp. 1482-1487. https://doi.org/10.1016/j.chemosphere.2009.10.027
  49. UBA(Umwelt Bundes Amt)(2006). Nanotechnology: Opportunities and risks for humans and the environment.
  50. Usenko, C. Y., Harper, S. L., and Tanguay, R. L. (2007). In vivo evaluation of earbon fullerene toxicity using embryo zebrafish. Carbon, 45, pp. 1891-1898. https://doi.org/10.1016/j.carbon.2007.04.021
  51. Van Hoecke, K., De Schamphelaere, K. A., Van der Meeren, P., Lucas, S., and Janssen, C. R. (2008). Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: importance of surface area. Environ. Toxicol. Chem., 27(9), pp. 1948-1957. https://doi.org/10.1897/07-634.1
  52. Wiench, K., Woblleben, W., Hisgen, V., Radke, K., Salinas, E., Zok, S., and Landsiedel, R. (2009). Acute and chronic effects of nano- and non-nano-scale $TiO_2$ and ZnO particles on mobilily and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere, 76, pp. 1356-1365. https://doi.org/10.1016/j.chemosphere.2009.06.025
  53. Yang, L. and Walls, D. J. (2005 ). Particle surface characteristics may play an importanl role in phytotoxieiry of alumina nanoparticles. Toxicol. Lett., 158, pp. 122-132. https://doi.org/10.1016/j.toxlet.2005.03.003
  54. Zhang, X., Sun, H., Zhang, Z., Niu, Q., Chen, Y., and Crittenden, J. C. (2007). Enhanced bioaccumutation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere, 67(1), pp. 160-166. https://doi.org/10.1016/j.chemosphere.2006.09.003
  55. Zhu, S., Oberdorster, E., and Haasch, M. L. (2006). Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Marine Environ. Res., 62, pp. S5-S9. https://doi.org/10.1016/j.marenvres.2006.04.059
  56. Zhu, X., Wang, J., Zhang, X., Chang, Y., and Chen, Y. (2009a). The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology, doi:10.1088/0957-4484/20/19/195103.
  57. Zhu, X., Zhu, L., Cben, Y., and Tian, S. (2009b). Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J. Nanopart. Res., 11, pp. 67-75. https://doi.org/10.1007/s11051-008-9426-8
  58. Zhu, X., Zhu, L., Duan, Z., Qi, R., Li, Y., and Lang, Y. (2008a). Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J. Environ. Sci. Health A, 43(3), pp. 278-284. https://doi.org/10.1080/10934520701792779
  59. Zhu, X., Zhu, L., Lang, Y., and Chen, Y. (2008b). Oxidative stress and growth inhibition in the freshwater fish Carassius auratus induced by chronic exposure to sublethal fullerene aggregates. Environ. Toxicol. Chem., 27(9), pp. 1979-1985. https://doi.org/10.1897/07-573.1
  60. Zhu, X., Zhu, L., Li, Y., Duan, Z., Chen, W., and Alvarez, P. J. J. (2007). Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomateriala: buckminsterfullerene aggregates (nC60) and fullerol. Environ. Toxicol. Chem., 26(5), pp. 976-979. https://doi.org/10.1897/06-583.1