고정층 흡착탑에서 석탄비산재로부터 합성한 Zeolite의 VOCs 흡착 해석

Adsorption Analysis of VOCs of Zeolite Synthesized by Coal Fly Ash in a Fixed-bed Adsorber

  • 김성수 (부산가톨릭대학교 환경행정학과) ;
  • 이창한 (부산가톨릭대학교 환경행정학과) ;
  • 박상욱 (부산대학교 화공생명공학부)
  • Kim, Seong-Soo (Department of Environmental Administration, Catholic University of Pusan) ;
  • Lee, Chang-Han (Department of Environmental Administration, Catholic University of Pusan) ;
  • Park, Sang-Wook (Division of Chemical Engineering, Pusan National University)
  • 투고 : 2010.04.30
  • 심사 : 2010.06.01
  • 발행 : 2010.12.31

초록

고정층 반응기에서 비산재로부터 합성한 제올라이트와 4종류의 활성탄을 사용하여 질소 기류에서 아세톤, 벤젠, 톨루엔, 에틸벤젠 증기의 파과곡선을 측정하였다. 흡착실험은 101.3 kPa, $40^{\circ}C$에서 혼합 가스의 유량 $70cm^3/min$, 흡착제의 공급량 5 g, 그리고 VOCs 증기의 농도는 포화조의 온도를 $30^{\circ}C$로 하여 행하였다. 실험으로부터 얻은 파과곡선의 비선형해석으로부터 VOCs의 흡착과 흡착제의 비활성화를 동시에 고려한 비활성모델의 흡착속도상수와 비활성속도상수를 구하여 문헌의 다른 흡착등온모델과 비교하였다. 검토한 모델 중 비활성모델이 실험결과와 가장 일치하였고 다음으로 Freundlich, DRK 모델 순으로 높은 상관관계를 나타내었다. 또한 파과곡선으로부터 구한 흡착제의 흡착용량은 VOC의 끓는점이 증가할수록 감소하였으며, 증기압이 증가할수록 증가하였다.

VOCs such as acetone, benzene, toluene, ethylbenzene were adsorbed in a fixed-bed adsorber using zeolite synthesized from coal fly ash and 4 kinds of activated carbon at 101.3 kPa. The adsorber was operated batchwise with the charge of 5 g adsorbent to obtain the breakthrough curve of VOCs. Experiments were carried out at $40^{\circ}C$, nitrogen flow rate of $70cm^3/min$ and sparger temperature of $30^{\circ}C$. The deactivation model was tested for these curves by combining the adsorption of VOCs and the deactivation of adsorbent particles. The observed values of the adsorption rate constant and the deactivation rate constant were evaluated through analysis of the experimental breakthrough data using a nonlinear least square technique. The experimental breakthrough data were fitted very well to the deactivation model than the adsorption isotherm models in the literature. Also, adsorption capacities of adsorbents were obtained from the breakthrough curve to observe the correlation between adsorption capacity and the physical properties of VOCs.

키워드

참고문헌

  1. Kim, H. S. and Park, Y. S., "Binary Component Adsorption Characteristics of Benzene and Toluene at the Fixed-bed Adsorption Column with Activated Carbon," J. KSEE, 25, 977-983 (2003).
  2. Lim, J. K., Lee, S. W., Kam, S. K., Lee, D. W. and Lee, M. G., "Adsorption Characteristics of Toluene Vapor in Fixed-bed Activated Carbon Column," J. Environ. Sci., 14, 61-69(2005). https://doi.org/10.5322/JES.2005.14.1.061
  3. Noll, K. E., Gounaris, V. and Hou, W. S., Adsorption technology for air and water pollution control, Lewis Publishers, Inc., Michigan(1992).
  4. Kim, D. J., Shim, W. G. and Moon, H., "Adsorption Equilibrium of Solvent Vapors on Activated Carbons," Korean J. Chem. Eng., 18, 518-524(2001). https://doi.org/10.1007/BF02698300
  5. Lee, M. G., Lee, S. W. and Lee, S. H., "Comparison of Vapor Adsorption Characteristics of Acetone and Toluene Based on Polarity in Activated Carbon Fixed-bed Reactor," Korean J. Chem. Eng. 23, 773-778(2006). https://doi.org/10.1007/BF02705926
  6. Lee, S. W., Bae, S. K., Kwon, J. H., Na, Y. S., An, C. D., Yoon, Y. S. and Song, S. K., "Correlations Between Pore Structure of Activated Carbon and Adsorption Characteristics of Acetone Vapor," J. KSEE, 27, 620-625(2005).
  7. Nelson, G. O. and Harde, C. A., "Respirator Cartridge Efficiency Studies: V. Effect of Solvent Vapor," Am. Ind. Hyg. Assoc. J., 37, 391-410(1974).
  8. Nelson, G. O. and Harde, C. A., "Respirator Cartridge Efficiency Studies: VI. Effect of Concentration," Am. Ind. Hyg. Assoc. J., 37, 205-216(1976). https://doi.org/10.1080/0002889768507444
  9. Wood, G. O., "Estimating Service Lives of Organic Vapor Cartridges," Am. Ind. Hyg. Assoc. J., 55, 11-15(1994). https://doi.org/10.1080/15428119491019203
  10. Son, M. S., Kim, S. D., Woo, K. J., Park, H., Seo, M., Lee, S. and Ryu, S. K., "Adsorption Characteristics of Three-components Volatile Organic Compounds on Activated Carbonaceous Adsorbents," Korean J. Chem. Eng, Res., 44, 669-675(2006).
  11. Ruthven, D. M., Principles of Adsorption and Adsorption Processes, John Wiley, New York(1984).
  12. Yoon, J. H. and Nelson, G. O., "Application of Gas Adsorption Kinetics : I. A Theoretical Model for Respirator Cartridge Service Life," Am. Ind. Hyg. Assoc. J., 45, 509-516(1984). https://doi.org/10.1080/15298668491400197
  13. Yasyerli, S., Dogu, T., Dogu, G. and Ar, I., "Deactivation Model for Textural Effects On Kinetics of Gas-solid Non-catalytic Reactions; Char Gasification with $CO_2$," Chem. Eng. Sci., 51, 2523-2528 (1996). https://doi.org/10.1016/0009-2509(96)00104-2
  14. Park, S. W., Choi, B. S. and Lee, J. W., "Breakthrough Data Analysis of Adsorption of Toluene Vapor in a Fixed-bed of Granular Activated Carbon," Sep. Sci. Technol., 42, 2221-2233 (2007). https://doi.org/10.1080/01496390701444105
  15. Park, S. W., Sung, D. H., Choi, B. S., Oh, K. H. and Moon, K. H., "Sorption of Carbon Dioxide onto Sodium Carbonate," Sep. Sci. Technol., 41, 2665-2684(2006). https://doi.org/10.1080/01496390600826659
  16. Oh, K. J., Park, D. W., Kim, S. S. and Park, S. W., "Breakthrough Data Analysis of Adsorption of Volatile Organic Compounds on Granular Activated Carbon," Korean J. Chem. Eng., 27, 632-638 (2010). https://doi.org/10.1007/s11814-010-0079-9
  17. Suzuki, M., Adsorption Engineering, Kodansga Ltd., Tokyo(1990).