Optimization of Ammonia Percolation Process for Ethanol Production from Miscanthus Sinensis

억새를 이용한 바이오 에탄올 생산을 위한 암모니아 침출 공정 최적화

  • Kim, Kyoung-Seob (Department of Chemical Engineering, Kyonggi University) ;
  • Kim, Jun Seok (Department of Chemical Engineering, Kyonggi University)
  • 김경섭 (경기대학교 화학공학과) ;
  • 김준석 (경기대학교 화학공학과)
  • Received : 2010.06.01
  • Accepted : 2010.07.08
  • Published : 2010.12.31

Abstract

Lignocellulose ($2^{nd}$ generation) is difficult to hydrolyze due to the presence of lignin and the technology developed for cellulose fermentation to ethanol is not yet economically viable. However, recent advances in the extremely new field of biotechnology for the ethanol production are making it possible to use of agriculture residuals and nonedible crops biomass, e.q., rice straw and miscanthus sinensis, because of their several superior aspects as agriculture residual and nonedible crops biomass; low lignin, high contents of carbohydrates. In this article, as the basic study of AP(Ammonia Percolation), the properties and the optium conditions of process were established, and then the overall efficiency of AP was investigated. The important independent variables for AP process were selected as ammonia concentration, reaction temperature, and reaction time. The percolation condition for maximizing the content of cellulose, the enzymatic digestibility, and the lignin removal was optimized using RSM(Response Surface Methodology). The determined optimum condition is ammonia concentration; 11.27%, reaction temperature; $157.75^{\circ}C$, and reaction time; 10.01 min. The satisfying results were obtained under this optimized condition, that is, the results are as follows: cellulose content(relative); 39.98%, lignin content(relative); 8.01%, and enzymatic digestibility; 85.89%.

당질계 및 전분질계 바이오 매스(1세대 바이오 매스)의 단점은 식량고갈의 문제로 인한 원료수급이 불안정하여 원료비 상승과 함께 원료 확보라는 문제에 당면해 있다. 이를 해결하기 위한 다양한 대책이 모색되었고 그 대책으로 목질계 바이오 매스(2세대 바이오 매스)에 대한 연구가 이루어져 왔다. 그러나 목질계 바이오 매스는 매우 복잡하고 어려운 Lignin 제거 문제에 직면하게 되었다. 그리하여 현재는 기존의 바이오 매스의 단점을 극복할 새로운 바이오 매스인 비 식용작물의 관심이 증가하고 있다. 비 식용작물 바이오 매스는 당질계 및 전분질계 바이오 매스와 달리 식량문제로 인한 원료비의 상승이나 원료 확보 면에서 안전하며 또한 기존 목질계 바이오 매스에 비해 보다 쉽게 Lignin을 제거할 수 있는 장점이 있다. 본 논문에서는 이러한 비 식용작물 중 Cellulose 함량이 높고 Lignin 함량이 상대적으로 낮은 억새를 이용하여 암모니아 공정 전처리의 최적화 조건을 연구하였다. 공정변수로는 암모니아 농도, 반응시간, 반응온도를 선정하였으며 전처리 후 각 반응물의 Cellulose 함유율, Lignin 함유율, 잔류 고체량 및 가수분해도를 반응표면 분석법을 이용하여 최적 전처리 조건을 확립하였다. 최적조건 탐색 결과는 암모니아 반응농도; 11.27%, 반응온도; $157.75^{\circ}C$, 반응시간; 10.01 min으로 최적 반응조건을 결정할 수 있었으며 최적조건으로 전처리 후 억새의 상대적인 Cellulose 함유율; 39.98%, Lignin 함유율; 8.01%, 가수분해도; 85.89%의 결과를 얻어, 억새가 기존 목질계 바이오 매스들보다 전처리 및 당화 발효에 있어 유리한 기질이라고 결론지을 수 있다.

Keywords

References

  1. Lee, J. K. and Bransby, D., Biofule Industry and Recent Research in USA. J. Kor. Grass. Forage Sci., 28(2), 129-138(2008). https://doi.org/10.5333/KGFS.2008.28.2.129
  2. Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauclund, M. F., Liden, G. and Zacchu, G., "Bioethanol- the Fuel of Tomorrow from Residues of Today," Trend Biotechnol, 24, 549-556(2006). https://doi.org/10.1016/j.tibtech.2006.10.004
  3. Chung, C.-H., Cellulosic Ethanol Production. Korean J. Biotechnol. Bioeng. 23(1), 1-7(2008).
  4. Ahn, D. and Chang, H. N., "Liquefaction and Saccharification of Starch Using $\alpha$-amylase and Immobilized Glucoamylase," Microbiol. Biotechnol, 19(5), 497-503(1991).
  5. Ratnam, B. V. V., Rao, M. N., Rao, M. D. and Ayyanna, C., "Optimization of Fermentation Conditions for the Production of Ethanol from Sago Starch Using Response Surface Methodology," J. Microbiol. Biotech., 19, 523-526(2003). https://doi.org/10.1023/A:1025174731814
  6. Birol, G., Onsan, Z. I., Kirdar, B. and Oliver, S. G., "Ethanol Production and Fermentation Characteristics of Recombinant Saccharomyces Cerevisiae Strains Grown on Starch," Enzym. Microbio. Technol., 22, 672-677(1998). https://doi.org/10.1016/S0141-0229(97)00244-5
  7. Zhao, H., Kwak, J. H., Zhang, C., Brown, H. M., Arey, B. W. and Johnathan, E. H., "Studying Cellulose Fiber Structure by SEM, XRD, NMR and Acid Hydrolysis," Carbohydr. Sci. Direct., 68, 235-241(2006).
  8. Shigechi, H., Koh, J., Fujita, Y., Matsumoto, T., Bito, T., Ueda, M., Satoh, E., Fukuda, H. and Kondo, A., "Direct Production of Ethanol from Raw Corn Starch via Fermentation by Use of Novel Surface-Engineered Yeast Strain Codisplaying Glucoamylase and a-Amylase," Appl. Environ. Microbiol., 70(8), 5037-5040 (2004). https://doi.org/10.1128/AEM.70.8.5037-5040.2004
  9. Keith, C., Economic Issues related to bio fuels; a written testimony for field hearing (Aug. 26, 2006), U.S. senate committee on agriculture, rular development, and related agencies(2006).
  10. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzaplle, M. and Ladisch, M., "Feature of Promising Technologies for Pretreatment of Lignocellulosic Biomass," Bioresource Technol., 96, 673-686(2005). https://doi.org/10.1016/j.biortech.2004.06.025
  11. Oh, K. K., Hong, S. I. and Lee, Y. Y., "Optimization of Ammonia Recycled Percolation Process for Lignocellulosic Biomass Pretreatment," HWAHAK KONGHAK, 34, 418(1996).
  12. Kim, T. H., Kim, J. S., Sunwoo, C. S. and Lee, Y. Y., "Pretreatment of Corn Stover by Ammonia Recycle Percolation Process," Bioresour. Technol., 90, 39-47(2003). https://doi.org/10.1016/S0960-8524(03)00097-X
  13. Eggeman, T. and Elander, R. T., "Process and Economic Analysis of Pretreatment Technologies," Bioresource Technol., 86, 105-115(2005).
  14. Kim, S. B., Yum, D. M. and Park, S. C., "Step-change Variation of Acid Concentration in a Percolation Reactor for Hydrolysis of Hardwood Hemicellulose," Bioresour. Technol., 72, 289-294(2000). https://doi.org/10.1016/S0960-8524(99)00081-4
  15. Cahela, D. R., Lee, Y. Y. and Chambers, R. P., "Modeling of Percolation Process in Hemicellulose Hydrolysis," Biotechnol. Bioeng., 25, 3-17(1983). https://doi.org/10.1002/bit.260250103
  16. Azzam, A. M., "Pretreatment of Cane Bagasse with Alkaline Hydrogen Peroxide for Enzymatic Hydrolysis of Cellulose and Ethanol Fermentation," J. Environ. Sci. Health. B. 24, 421-433(1985).
  17. Murai, T., Yoshino, T., Ueda, T., Haranoya, I., Ashikari, T., Hajime, S., Yoshizumi, A. and Tanaka, A., "Evaluation of the Function of Arming Yeast Displaying Glucoamylase on Its Cell Surface by Direct Fermentation of Corn to Ethanol," J. Ferment. Bioengineer., 86(6), 569-572(1998). https://doi.org/10.1016/S0922-338X(99)80008-7
  18. Marques, J., Vila-Real, H. J., Alfaia, A. J. and Ribeiro, M. H. L., "Modeling of the High Pressure-temperature Effects on Naringin Hydrolysis Base on Response Surface Methodology," Food Chem. 105, 504-510(2007). https://doi.org/10.1016/j.foodchem.2007.04.012
  19. Roberto, E. C., Mussatto, S. I. and Rodrigues, R. C. L. B., "Dilute-acid Hydrolysis for Optimization of Xylose Recovery from Rice Straw in a Semi-pilot Reactor," Industrial Crops and Products. 17, 171-176(2003). https://doi.org/10.1016/S0926-6690(02)00095-X
  20. Montgomery, D. C., "Design and Analysis of Experiments," Fifth ed., John Wiley & Sons, Inc.(2001).
  21. Canettieri, E. V., Moraed Rocha, G. J., Jr. Carvalho, J. A. and Silva, J. B. A., "Optimization of Acid Hydrolysis from the Hemicellulosic Fraction of Eucalypus grandis Residue Using Response Surface Methodology," Bioresour. Technol., 98, 422-428(2007). https://doi.org/10.1016/j.biortech.2005.12.012
  22. National Renewable Energy Laboratory, Standard Biomass Analytical Procedures. http://www.nrel.gov/biomass/analytical_ procedures.html.