DOI QR코드

DOI QR Code

THE AP-HENSTOCK EXTENSION OF THE DUNFORD AND PETTIS INTEGRALS

  • Yoon, Ju Han (Department of Mathematics Education Chungbuk National University) ;
  • Park, Jae Myung (Department of Mathematics Chungnam University) ;
  • Kim, Young Kuk (Department of Mathematics Education Seowon University) ;
  • Kim, Byung Moo (Department of general Arts Chungju University)
  • Received : 2010.11.05
  • Accepted : 2010.11.25
  • Published : 2010.12.30

Abstract

In this paper, we introduce the AP-Henstock Dunford, AP-Henstock Pettis and AP-Henstock Bochner integral Banach-valued functions and investigate some properties of the these integrals.

Keywords

Acknowledgement

Supported by : Chungbuk National University

References

  1. T. Chew and K. Liao, The descriptive definitions and properties ofthe AP-integral ande their application to te problem of controlled convergence, Real Analysis Exchange. 19 (1993-4), 81-97.
  2. J. L. Gamez and J. Mendoza, On Denjoy-Dunford and Denjoy-Pettis integral, Studia Math. 130 (1998), 115-133.
  3. R. A. Gordon, The Denjoy extension of the Bochner, Pettis, and Dunford integrals, Studia Math. 92 (1989), 73-91. https://doi.org/10.4064/sm-92-1-73-91
  4. R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Studia Math. 92 (1994).
  5. J. M. Park,The Denjoy extension of the Riemann and McShane integrals, Czechslovak Math. J. 50(125) (2000), 615-625. https://doi.org/10.1023/A:1022845929564
  6. J. M. Park, D. H. Lee and J. H. Yoon, the Integral of Banach Space -valued functions, Chungcheong Math. J. 20 (2008), 79-89.