DOI QR코드

DOI QR Code

GALOIS ACTIONS OF A CLASS INVARIANT OVER QUADRATIC NUMBER FIELDS WITH DISCRIMINANT D ≡ -3 (mod 36)

  • Jeon, Daeyeol (Department of Mathematics Education Kongju National University)
  • Received : 2010.10.20
  • Accepted : 2010.11.24
  • Published : 2010.12.30

Abstract

A class invariant is the value of a modular function that generates a ring class field of an imaginary quadratic number field such as the singular moduli of level 1. In this paper, using Shimura Reciprocity Law, we compute the Galois actions of a class invariant from a generalized Weber function $g_2$ over quadratic number fields with discriminant $D{\equiv}-3$ (mod 36).

Keywords

References

  1. R. M. Broker, Constructing elliptic curves of prescribed order, Ph. D. Thesis, Universiteit Leiden, 2006.
  2. H. H. Chan, Gee, A., and V. Tan, Cubic singular moduli, Ramanujan's class invariants $\lambda_{n}$ and the explicit Shimura reciprocity law, Pacific J. Math. 208 (2003) 23-37. https://doi.org/10.2140/pjm.2003.208.23
  3. A. Gee, Class invariants by Shimura's reciprocity law, J. Theor. Nombre Bordeaux 11 (1999) 45-72. https://doi.org/10.5802/jtnb.238
  4. A. Gee, Class fields by Shimura reciprocity, Ph. D. Thesis, Universiteit van Amsterdam, 2001.
  5. A. Gee and P. Stevenhagen, , Generating class fields using Shimura reciprocity, Proceedings of the Third International Symposium on Algorithmic Number Theory (Lecture Notes in Computer Sciences 1423, 441-453, Springer-Verlag, 1998).
  6. G. Shimura, Introduction to the arithmetic theory of automorphic forms, Princeton University Press, 1971.
  7. P. Stevenhagen, Hilbert's 12th problem, complex multiplication and Shimura reciprocity, Class field theory-its centenary and prospect, ed. K. Miyake, Adv. Studies in pure math., 30 (2001), 161-176.
  8. H. Weber, Lehrbuch der Algebra, dritter Band, Friedrich Vieweg und Sohn, 1908.