DOI QR코드

DOI QR Code

A THIRD-ORDER VARIANT OF NEWTON-SECANT METHOD FINDING A MULTIPLE ZERO

  • Kim, Young Ik (Department of Applied Mathematics Dankook University) ;
  • Lee, Sang Deok (Department of Applied Mathematics Dankook University)
  • 투고 : 2010.10.20
  • 심사 : 2010.11.09
  • 발행 : 2010.12.30

초록

A nonlinear algebraic equation f(x) = 0 is considered to find a root with integer multiplicity $m{\geq}1$. A variant of Newton-secant method for a multiple root is proposed below: for n = 0, 1, $2{\cdots}$ $$x_{n+1}=x_n-\frac{f(x_n)^2}{f^{\prime}(x_n)\{f(x_n)-{\lambda}f(x_n-\frac{f(x_n)}{f^{\prime}(x_n)})\}$$, $$\lambda=\{_{1,\;if\;m=1.}^{(\frac{m}{m-1})^{m-1},\;if\;m{\geq}2$$ It is shown that the method has third-order convergence and its asymptotic error constant is expressed in terms of m. Numerical examples successfully verified the proposed scheme with high-precision Mathematica programming.

키워드

참고문헌

  1. S. D. Conte and Carl de Boor, Elementary Numerical Analysis, McGraw-Hill Inc., 1980.
  2. Qiang Du, Ming Jin, T. Y. Li and Z. Zeng, The Quasi-Laguerre Iteration, Mathematics of Computation 66 (1997), no. 217, 345-361. https://doi.org/10.1090/S0025-5718-97-00786-2
  3. Y. H. Geum, The asymptotic error constant of leap-frogging Newton's method locating a simple real zero, Applied Mathematics and Computation 66 (1997), no. 217, 345-361. https://doi.org/10.1090/S0025-5718-97-00786-2
  4. E. Hansen and M. Patrick, A family of root finding methods, Numer. Math. 27 (1977), 257-269.
  5. Jisheng Kou, Yitian Li and Xiuhua Wang, A modification of Newton method with third-order convergence, Applied Mathematics and Computation 181, Issue 2 (2006), 1106-1111. https://doi.org/10.1016/j.amc.2006.01.076
  6. Jerrold E. Marsden, Elemantary Classical Analysis, W. H. Freeman and Com- pany, 1974.
  7. John H. Mathews, Basic Complex Variables for Mathematics and Engineering, Allyn and bacon, Inc., 1982.
  8. L. D. Petkovic, M. S. Petkovic and D. Zivkovic, Hansen-Patrick's Family Is of Laguerre's Type, Novi Sad J. Math. 33 (2003), no. 1, 109-115.
  9. F. A. Potra and V. Ptak, Nondiscrete induction and iterative processes, Research Notes in Mathematics, Vol. 103, Pitman, Boston, 1984.
  10. J. Stoer and R. Bulirsh, Introduction to Numerical Analysis, pp. 244-313, Springer-Verlag New York Inc., 1980.
  11. J. F. Traub, Iterative Methods for the Solution of Equations, Chelsea Publishing Company, 1982.
  12. Stephen Wolfram, The Mathematica Book, 4th ed., Cambridge University Press, 1999.