References
- Y. J. Cho, Fixed points in fuzzy metric space, J. Fuzzy Math. 5 (1997), no. 4, 949-962.
- S. H. Cho, On common fixed points in fuzzy metric spaces, Intrnational Mathematical Forum 1 (2006), no. 10, 471-479.
- S. Gahler, 2-metrische Raume and ihre topologische structure, Math. Nachr. 26 (1983), 115-148.
- A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
- M. Grabiec, Fixed points in fuzzy metric space, Fuzzy Sets and Systems 27 (1988), 385-389. https://doi.org/10.1016/0165-0114(88)90064-4
- O. Hadzic, E. Pap, Fixed point theory in probabilistic metric spaces, Kluwer Academic Publishers, Dordrecht, 2001.
- E. P. Klement, R. Mesiar and E. Pap, Triangular Norm, Kluwer Academic Publishers, Trens 8.
- I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326-334.
- K. P. R. Rao, G. N. V. Kishore, T. Ranga Rao, Weakly f-compatible pair (f; g) and common fixed point theorems in fuzzy metric spaces, Mathematical Sciences 2 (2008), no. 3, 293-308.
- B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313-334. https://doi.org/10.2140/pjm.1960.10.313
- S. Sharma, On fuzzy metric spaces, Southeast Asian Bull. of Math. 26 (2002), no. 1, 133-145.
- K. Iseki, P. L. Sharma, B. K. Sharma, Contractive type mapping on 2-metric space, Math. Japonica 21 (1976), 67-70.
- L. A. Zadeh, Fuzzy Sets, Inform. and Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X