바이오에어로졸에 대한 항균 기술의 현황과 발전 방향

A study on the situation and development for the antimicrobial technologies of bioaerosol

  • 박철우 (연세대학교 기계공학과) ;
  • 윤영훈 (한국환경산업기술원 녹색기술개발실) ;
  • 황정호 (연세대학교 기계공학과)
  • Park, Chul-Woo (Department of Mechanical Engineering, Yonsei University) ;
  • Yoon, Young-Hoon (Green Technology Development Office, Korea Environmental Industry and Technology Institute) ;
  • Hwang, Jungho (Department of Mechanical Engineering, Yonsei University)
  • 투고 : 2010.04.05
  • 심사 : 2010.06.21
  • 발행 : 2010.06.30

초록

키워드

참고문헌

  1. Collins, F.M. (1971). Relative susceptibility of acid-fast and non-acid fast bacteria to ultraviolet light, Applied Microbiology, 21, 411-413.
  2. Foarde, K.K., Hanley, J.T., and Veeck, A.C. (2000). Efficacy of antimicrobial filter treatments, ASHRAE Journal, 42, 62-64.
  3. Gates, F.L. (1929). A study of bactericidal action of ultraviolet light, Journal General Physiology, 13, 231. https://doi.org/10.1085/jgp.13.2.231
  4. Griffiths, W.D., Bennett, A., Speight, S., and Parks, S. (2005). Determining the performance of a commercial air purification system for reducing airborne contamination using model micro- organisms: a new test methodology, Journal of Hospital Infection, 61, 242–247.
  5. Goswami, D.Y., Trivedi, D.M, and Block, S.S. (1997). Photocatalytic disinfection of indoor air, Solar Engineering, 1, 92-96.
  6. Kelly-Wintenberg, K., Sherman, D.M., Tsai, P., Gadri, R.B., Karakaya, F., Chen, Z., Roth, J.R., and Montie, T.C. (2000). Air filter sterilization using a one atmosphere uniform glow discharge plasma (the Volfilter), IEEE Transaction on Plasma Science, 28, 64-71. https://doi.org/10.1109/27.842866
  7. Maus, R., Goppelsroder, A., and Umhauer, H. (2001). Survival of bacteria and mold spores in air filter media, Atmospheric Environment, 35, 105-113. https://doi.org/10.1016/S1352-2310(00)00280-6
  8. Park, S.J. and Jang, Y.S. (2003). Preparation and characterization of activated carbon fibers supported with silver metal for antimicrobial behavior, Journal of Colloid and Interface Science, 261, 238-243. https://doi.org/10.1016/S0021-9797(03)00083-3
  9. Riley, R.L., and Kaufman, J.E. (1972). Effect of relative humidity on the inactivation of airborne serratia marcescens by ultraviolet radiation, Applied Microbiology, 23, 1113-1120.
  10. Schleibinger, H., and Ruden, H. (1999). Air filters from HVAC systems as possible source of volatile organic compounds (VOC) - laboratory and field assays, Atmospheric Environment, 33, 4571-4577. https://doi.org/10.1016/S1352-2310(99)00274-5
  11. Verdenelli, M.C., Cecchini, C., Orpianesi, C., Dadea, G.M., and Cresci, A. (2003). Efficacy of antimicrobial filter treatments on microbial colonization of air panel filter, Journal of Applied Microbiology, 94, 9-15. https://doi.org/10.1046/j.1365-2672.2003.01820.x
  12. Wolfrum E.J., Huang, J., Blake, D.M., Maness, P.C., Huang, Z., Fiest, J., and Jacoby, W.A. (2002). Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces, Environmental Sciences and Technology, 36, 3412-3419. https://doi.org/10.1021/es011423j
  13. Yoon, K.Y., Byeon, J.H., Park, C.W., and Hwang, J. (2008). Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers, Environmental Science and Technology, 42, 1251-1255. https://doi.org/10.1021/es0720199
  14. Yoon, K.Y., Byeon, J.H., Park, J.H. and Hwang, J. (2007). Susceptibility constant of E.coli and B.subtilis to silver and copper nanoparticles, Science of the Total Environment, 373, 572-575. https://doi.org/10.1016/j.scitotenv.2006.11.007