하이브리드시스템을 이용한 악취폐가스 처리

Treatment of Malodorous Waste Air Using Hybrid System

  • 이은주 (경북대학교 화학공학과) ;
  • 임광희 (대구대학교 화학공학과)
  • Lee, Eun Ju (Department of Chemical Engineering, Kyungpook National University) ;
  • Lim, Kwang-Hee (Department of Chemical Engineering, Daegu University)
  • 투고 : 2010.05.25
  • 심사 : 2010.06.05
  • 발행 : 2010.06.30

초록

본 연구에서는 광촉매반응기/폐가스 가습조(유동상호기 및 무산소조)를 포함한 바이오필터공정으로 이루어진 하이브리드시스템을 구축하여 퇴비공장 또는 공공시설에서 발생되는 황화수소, 암모니아 및 휘발성 유기화합물을 포함한 악취폐가스에 대한 처리효율을 제고하고 종합적인 적정 작업조건을 구축하였다. 악취가스(2 L/min)에 포함된 암모니아(300 ppmv)의 경우 광촉매반응기에서 약 22%가 제거되고, 폐가스 가습조에서 약 55%가 제거되고, 후 공정인 바이오필터에서 나머지인 약 23%가 모두 제거되었다. 악취가스에 포함된 톨루엔(100 ppmv)의 경우 광촉매반응공정에서 약 20%가 제거되고, 폐가스 가습조(유동상 호기 및 무산소조)에서 약 10% 제거되며 마지막 공정인 바이오필터에서 나머지 70% 모두가 제거되었다. 따라서 물에 용해도가 높은 암모니아의 경우에는 폐가스가습조에서 주로 제거되었고, 용해도가 낮은 톨루엔의 경우는 바이오필터에서 주로 제거되었다. 한편 황화수소(10 ppmv)는 광촉매반응공정에서 거의 처리되고 잔류 trace는 폐가스가습조에 용해되어서 바이오필터로 인입되는 가습된 feed에서 황화수소가 검지되지 않았다. 폐가스 가습조(유동상호기 및 무산소조)에서의 nitrate 농도는 무산소조에서 발생하는 탈질반응 때문에 무산소조 경우가 유동상호기조보다 약 3 ppm 정도 낮았다. 또한 폐가스가습조의 용존 암모니아 농도는 실험 시작부터 1,500~2,000 ppm 사이의 높은 값을 유지하였는데, 이는 폐가스 가습조 내부에 있는 용수에 포함된 염화암모늄 및 기타 암모니아성 질소원에 기인한다고 간주된다.

In this research hydrogen sulfide, ammonia and toluene were designated as the representative source of malodor and VOC, respectively, frequently generated at the compost manufacturing factory and publicly owned facilities. The optimum operating condition to treat the waste air(2 L/min) containing malodor was constructed using photocatalytic reactor/biofilter process with humidifier composed of fluidized aerobic anf anoxic reactor. The ammonia(300 ppmv) of fed-waste air was removed by 22, 55 and 23% at the stage of photocatalytic reactor, humidifier and biofilter, respectively. The toluene(100 ppmv) of fed-waste air was removed by 20, 10 and 70% at the stage of photocatalytic reactor, humidifier and biofilter, respectively. Therefore the water-soluble ammonia and the water-insoluble toluene were treated mainly at the stage of humidifier and biofilter, respectively. In addition, hydrogen sulfide(10 ppmv) was almost treated at the stage of photocatalytic reactor and its negligible trace was absorbed in humidifier so that it was not detected before biofilter process. The nitrate concentration of the process water from anoxic reactor was found lower by 3 ppm than that from fluidized aerobic reactor. Besides, the dissolved ammonia-nitrogen concentration of the process water from humidifier remained at the high value of 1,500-2,000 ppm, which may be attributed to the existence of ammonium chloride and other source of ammonium nitrogen.

키워드

참고문헌

  1. Hirai, M., Ohtake, M. and Shoda, M., "Removal Kinetics of Hydrogen Sulfide, Methanethiol and Dimethyl Sulfide by Peat Biofilters," J. Ferment. Bioeng., 70, 334-339(1990). https://doi.org/10.1016/0922-338X(90)90145-M
  2. Chris, E., Chris, Q., Peter, B., Jay, W. and Dirk, A., "Odor and Emissions Control Using Biotechnology for Both Collection and Wastewater Treatment Systems," Chem. Eng. J., 113, 93-104(2005). https://doi.org/10.1016/j.cej.2005.04.007
  3. Islander, R. I., Devinny, J. S., Mansfield, F., Postyn, A. and Shin, H., "Microbial Ecology of Crown Corrosions in Sewers," J. Environ. Eng., 117, 751-770(1990).
  4. Oyarzun, P., Arancibia, F., Canales, C. and Aroca, G. E., "Biofiltration of High Concentration of Hydrogen Sulfide Using Thiobacillus thioparus," Process Biochemistry, 39, 165-170(2003). https://doi.org/10.1016/S0032-9592(03)00050-5
  5. Cho, K.-S., Ryu, H. W. and Lee, N. Y., "Biological Deodorization of Hydrogen Sulfide Using Porous Lava as a Carrier of Thiobacillus thioxidants," J. Biosci. Bioeng., 90, 25-31(2000). https://doi.org/10.1016/S1389-1723(00)80029-8
  6. Wani, A. H., Branion, M. R. and Lau, A. K., "Effects of Periods of Starvation and Fluctuating Hydrogen Sulfide Concentration on Biofilter Dynamics and Performance," J. Hazard. Mater., 60, 287-303(1998). https://doi.org/10.1016/S0304-3894(98)00154-X
  7. Chung, Y.-C., Huang, C. and Tseng, C.-P., "Biodegradation of Hydrogen Sulfide by a Laboratory-scale Immobilized Pseudomonas putida CH11 Biofilter," Biotechnol. Progress, 12, 773-778(1996a). https://doi.org/10.1021/bp960058a
  8. Chung, Y.-C., Huang, C. and Tseng, C.-P., "Operation Optimization of Thiobacillus thioparus CH11 in a Biofilter for Hydrogen Sulfide Removal," J. Biotechnol., 52, 31-38(1996b). https://doi.org/10.1016/S0168-1656(96)01622-7
  9. Chung, Y.-C., Huang, C. and Tseng, C.-P., "Biological Elimination of $H_2S$ and $NH_3$ from Wastegases by Biofilter Packed with Immobilized Heterotrophic Bacteria," Chemosphere, 43, 1043-1050(2001). https://doi.org/10.1016/S0045-6535(00)00211-3
  10. Cox, H. H. J. and Deshusses, M. A., "Co-treatment of $H_2S$ and Toluene in a Biotrickling Filter," Chem. Eng. J., 87, 101-110(2002). https://doi.org/10.1016/S1385-8947(01)00222-4
  11. Shareefdeen, Z., Herner, B., Webb, D., Verhaeghe, L. and Wilson, S., "An Odor Predictive Model for Rendering Applications," Chem. Eng. J., 113, 215-220(2005). https://doi.org/10.1016/j.cej.2005.03.006
  12. Ottengraf, S. P. P., Exhaust gas purification, Biotechnology (H.J., Rehm, G. Reed, eds) Vol. 8, pp.426-452, VCH, Weinheim, Germany(1986).
  13. Deshusses, M. A., Hamer, G. and Dunn, I. J., "Behaviour of Biofilters for Waste Air Biotreatment. 1. Dynamic Model Develpement," Environ. Sci. Technol., 29, 1048-1058(1995). https://doi.org/10.1021/es00004a027
  14. Deshusses, M. A. and Dunn, I. J., Modelling experiments on the kinetics of mixed-solvent removal from waste gas in a biofilter, Proceedings of the 6th European Congress on Biotechnology (L. Alberghina, L. Frontali and P. Sensi eds.), pp.1191-1198, Elsevier Science B. V.(1994).
  15. Deshusses, M. A. and Hamer, G., "The Removal of Volatile Ketone Mixtures from Air in Biofilters," Bioprocess Eng., 9, 141-146(1993). https://doi.org/10.1007/BF00389921
  16. Lim, K.-H. and Lee, E. J., "Biofilter Modeling for Waste Air Treatment: Comparisons of Inherent Characteristics of Biofilter Models," Korean J. Chem. Eng., 20(2), 315-327(2003). https://doi.org/10.1007/BF02697247
  17. Buchner, R., "Auswirkungen Verschiedener Betriebszustande in der Biologischen Abluftreinigung am Beispiel von Biofiltern," Ph. D. Thesis, T. U. Wien, Austria(1989).
  18. Leson, G. and Winer, A. M., "Biofiltration: An Innovative Air Pollution Control Technology for VOC Emissions," J. Air & Waste Manage. Assoc., 41, 1045-1054(1991). https://doi.org/10.1080/10473289.1991.10466898
  19. Sorial, G. A., Smith, F. L., Suidan, M. T. and Biswas, P., "Evaluation of Trickle Bed Biofilter Media for Toluene Removal," J. Air Waste Manage. Assoc., 45, 801-810(1995). https://doi.org/10.1080/10473289.1995.10467410
  20. Lim, K. H., Park, S. W., Lee, E. J. and Hong, S. H., "Treatment of Mixed Solvent Vapors with Hybrid System Composed of Biofilter and Photo-catalytic Reactor," Korean J. Chem. Eng., 22(1), 70-79(2005). https://doi.org/10.1007/BF02701465
  21. Lim, K-. H., Park, S. W. and Lee, E. J., "Effect of Temperature on the Performance of a Biofilter Inoculated with Pseudomonas Putida to Treat Waste-air Containing Ethanol," Korean J. Chem. Eng., 22(6), 922-926(2005). https://doi.org/10.1007/BF02705676
  22. Lim, K. H. and Park, S. W., "The Treatment of Waste-air Containing Mixed Solvent Using Biofilter: 1. Transient Behavior of Biofilter to Treat Waste-air Containing Ethanol," Korean J. Chem. Eng., 21(6), 1161-1167(2004). https://doi.org/10.1007/BF02719488
  23. Chung, Y.-J., "Odor Removal by Using Compost and Granular Scrap Tires," J. KSWW, 13(1), 43-53(1999).
  24. Park, S. J. and Seo, J. S., "A Study on $H_2S/NH_3$ Odor Removal Using Wood - Charcoal," J. Korean Solid Waste Engineering Society, 17(3), 243-251(2000).
  25. Ramiro, G. M. and Danny, L. R., "Compatibility of Ammonia Suppressants Used in Poultry Litter with Mushroom Compost Preparation and Production," Bioresour. Technol., 97, 1679-1686(2006). https://doi.org/10.1016/j.biortech.2005.07.029
  26. Kim, K. Y. and Choi, H. L., "Animal Residue and Environment : On-site Evaluation on Odor Emissions from Livestock Manure Composting Facilities in the Han River Basin," J. Anim. Sci. & Technol. (Kor.), 43(6), 1005-1018(2001).
  27. Kazutaka, K., Takashi, O., Mitihiro, Y., Akane, K., Takako, N., Sigenori, M. and Tomoko, N., "Emissions of Malodorous Compunds and Greenhouse Gases from Composting Swine Feces," Bioresour. Technol., 56, 265-271(1996). https://doi.org/10.1016/0960-8524(96)00047-8
  28. Fami, Nishihima, W. and Okada, M., "Improvement of DOC Removal by Multi-stage AOP Biodegradation Process," In Proceeding of Enviro 2002 & IWA 3rd World Water Conference, Melbourne, Australia(2002).
  29. Scheck, C. K. and Frimmel, F. H., "Degradation of Phenol and Salicylic Acid by Ultraviolet Radiation/Hydrogenperoxide/Oxygen," Water Res., 29(10), 2346-2352(1995). https://doi.org/10.1016/0043-1354(95)00060-X
  30. Lim, K.-H., Jung, Y.-J., Park, L. S. and Min, K.-S., "Preparation and Characteristics of Media from Waste Tire Powder for Wastewater Treatment," HWAHAK KONGHAK, 39(5), 600-606(2001).
  31. Lee, E. J. and Lim, K.-H., "Evaluation of Adsorption Characteristics of the Media for Biofilter Design," Korean Chem. Eng. Res., 46(5), 808-815(2008).