신규 미니어레이어에 의한 폴리다이아세틸렌 패턴상의 생체유도결정화

Biomineralization on Polydiacetylene Patterns Deposited by Using a Novel Mini Arrayer

  • 이원덕 (고려대학교 화공생명공학과) ;
  • 이길선 (고려대학교 화공생명공학과) ;
  • 안동준 (고려대학교 화공생명공학과)
  • Lee, Won Doc (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Gil Sun (Department of Chemical and Biological Engineering, Korea University) ;
  • Ahn, Dong June (Department of Chemical and Biological Engineering, Korea University)
  • 투고 : 2009.12.17
  • 심사 : 2010.01.31
  • 발행 : 2010.06.30

초록

자연계에는 유/무기 복합막 형성시 크기와 배열이 정교하게 제어되면서 여러 무기물 결정들이 성장한다. 이와 같은 자연계의 유/무기 복합막을 인공적으로 재현하기 위한 시도가 다각적으로 이루어지고 있다. 유/무기 계면에서 생체모방 결정화의 대표적인 물질 중의 하나가 바로 탄산칼슘 결정이다. 탄산칼슘은 생체 내의 골격을 이루는 주성분이고 성장방법이 비교적 간단하여 많은 연구가 수행되어 왔다. 분자수준에서의 우수한 정돈 상태들을 지니고 있는 폴리다이아세틸렌(polydiacetylene: PDA)은 무기결정성장에 관하여 효과적인 template를 제공할 수 있다. 본 실험에서는 폴리다이아세틸렌의 패턴들을 고체기판에 동시에 증착시키기 위하여, 신규로 고안한 mini arrayer의 air/water의 계면을 이용하여 소수성 유리기판위에 PDA를 전이시켰다. 이 방법을 이용한 결정화 과정의 제어는 생체유도결정화의 매커니즘을 이해하는데 기여할 수 있을 것이다.

In natural world various inorganic crystals are grown with controlled shape and size in hybrid forms with organics. Such natural processes have been attempted much to mimick artificially. One of the example is calcium carbonate which has been examined a lot in the field of biomineralization. In this study, we utilize well-organized surface of polydiacetylene(PDA) films as the crystal-growing template. We devised a novel mini-arrayer device that transfers PDA films at air/water interfaces of each array well and deposit them to hydrophobized glass substrates. This technical improvement will contribute to facilitate better understandings of biomineralization mechanism.

키워드

참고문헌

  1. Lowenstam, H. A. and Weiner, S., On Biomiveralization, Oxford Univ. Press, New York(1989).
  2. Fendler, J. H., Membrane Mimetic Chemistry, John Wiley & Sons, New York(1982).
  3. Mann, S., Archibald, D. D., Didymus, J. M., Douglas, T., Heywood, B. R., Meldrum, F. C. and Reeves, N. J., "Crystallization at Inorganic-organic Interfaces: Biominerals and Biomimietic Synthesis," Science, 261, 1286-1292(1993). https://doi.org/10.1126/science.261.5126.1286
  4. Ahn, D. J., Berman, A. and Charych, D., "Probing the Dynamics of Template-Directed Calcite Crystallization with in Situ FTIR," J. Phys. Chem., 100, 12455-12461(1996). https://doi.org/10.1021/jp953536t
  5. Berman, A., Ahn, D. J., Lio, A., Salmeron, M., Reichert, A. and Charych, D., "Total Alignment of Calcite at Acidic Polydiacetylene Films: Cooperativity at the Organanic-Inorganic Interface," Science, 269, 515-518(1995). https://doi.org/10.1126/science.269.5223.515
  6. Rajam, S., Heywood, B. R., Walker, J. B. A. and Mann, S., "Oriented Crystallization of $CaCO_3$ under Compressed Monolayers. Part2. Morphological Studies of Mature Crystals," J. Chem. Soc. FARADAY TRANS., 87, 727-734(1991). https://doi.org/10.1039/ft9918700727
  7. Mellow, L. W., Acomprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans, London(1956).
  8. Kim, T. S. and Crooks, R. M., "Polymeric Self-assembling Monolayers. 1. Synthesis and Characterization of ${\omega}$-functionalized n-alkanethiols Containing a Conjugated Diacetylene Group," Tetrahedron Letter, 35, 9501-9504(1994). https://doi.org/10.1016/0040-4039(94)88496-X
  9. Cheng, Q. and Stevens, R. C., "Coupling of an Induced Fit Enzyme to Polydiacetylene Thin Films: Colorimetric Detection of Glucose," Adv. Mater., 9, 481-483(1997). https://doi.org/10.1002/adma.19970090605
  10. Charych, D. H., Cheng, Q., Reichert, A., Kuziemko, G., Stroh, M., Nagy, J. O., Spevak, W. and Stevens, R. C., "A Litmus Test for Molecular Recognition Using Artificial Membranes," Chem. Biol., 3, 113-120(1996). https://doi.org/10.1016/S1074-5521(96)90287-2
  11. Jonas, U., Shah, K., Norvez, S. and Charych, D. H., "Reversible Color Switching and Unusual Solution Polymerization of Hydrazide-Modified Diacetylene Lipids," J. Am. Chem. Soc., 121, 4580-4588(1990).
  12. Yamauchi, J., Yamaoka, A., Ikemoto, K. and Matsui, T., "Graft Copolymerization of Methyl Methacrylate onto Polypropylene Oxidized with Ozone," J. Appl. Polym. Sci., 43, 1197-1203(1991). https://doi.org/10.1002/app.1991.070430621
  13. Karlsson, J. O. and Gatenholm, P., "Preparation and Characterization of Cellulose-supported HEMA Hydrogels," Polymer, 38, 4727-4731(1997). https://doi.org/10.1016/S0032-3861(96)01075-0
  14. Dasgupta, S., "Surface Modification of Polyolefins for Hydrophilicity and Bondability: Ozonization and Grafting Hydrophilic Monomers on Ozonized Polyolefins," J. Appl. Polym. Sci., 41, 233-248(1990). https://doi.org/10.1002/app.1990.070410119
  15. Aizenberg, J., Black, A. J. and Whitesides, G. M., "Oriented Growth of Calcite Controlled by Self-Assembled Monolayers of Functionalized Alkanethiols Supported on Gold and Silver," J. Am. Chem. Soc., 121, 4500-4509(1999). https://doi.org/10.1021/ja984254k
  16. Exarhos, G. J., Risen, W. M. and Bauhman, R. H., "Resonance Raman Study of the Thermochromic Phase Transition of a Polydiacetylene," J. Am. Chem. Soc., 98, 481-487(1976). https://doi.org/10.1021/ja00418a026
  17. Spevak, W., Nagy, J. O., Charych, D. H., Schaefer, M. E., Gilbert, J. H. and Bednarski, M. D., "Polymerized liposomes Containing C-Glycosides of Sialic Acid: Potent Inhibitors of Influenza Virus in vitro Infectivity," J. Am. Chem. Soc., 115, 1146-1147(1993). https://doi.org/10.1021/ja00056a047
  18. Reichert, A., Nagy, J. O., Spevak, W. and Charych, D. H., "Polydiacetylene liposomes Functionalized with Sialic Acid Bind and Colorimetrically Detect Influenza Virus," J. Am. Chem. Soc., 117, 829-830(1995). https://doi.org/10.1021/ja00107a032
  19. Pan, J. J. and Charych, D. H., "Molecular Recognition and Colorimetric Detection of Cholera Toxin by Poly(Diacetylene) liposomes Incorporating G(M1) Ganglioside," Langmuir, 13, 1365-1367(1997). https://doi.org/10.1021/la9602675
  20. Chance, R. R., "Chromism in Poldiacetylene Solutions and Crystals," Macromolecules, 13, 396-398(1980). https://doi.org/10.1021/ma60074a037
  21. Chu, B. and Xu, R., "Chromatic Transition of Polydiacetylene in Solution," Chem. Res., 24, 384-389(1991). https://doi.org/10.1021/ar00012a005
  22. Rubner, M. F., "Novel Optical Properties of Polyurethane-Diacetylene Segmented Copolymers," Macromolecules, 19, 2129-2138(1986). https://doi.org/10.1021/ma00162a005
  23. Tashiro, K., Nishmura, H. and Kobayashi, M., "First Success in Direct Analysis of Microscopic Derformation Mechanism of Polydiacetylene Sing Crystal by the X-ray Imaging-Plate System," Macromolecules, 29, 8188-8196(1996). https://doi.org/10.1021/ma960882f
  24. Kim, J. M., Lee, J. S., Choi, H., Sohn, D. W. and Ahn, D. J., "Rational Design and in-Situ FTIR Analyses of Colorimetrically Reversibe Polydiacetylene Supramolecules," Macromolecules, 38, 9366-9376(2005). https://doi.org/10.1021/ma051551i