ALMOST LINDELÖF FRAMES

  • Received : 2009.12.23
  • Accepted : 2010.02.22
  • Published : 2010.03.01

Abstract

Generalizing $Lindel{\ddot{o}}f$ frames and almost compact frames, we introduce a concept of almost $Lindel{\ddot{o}}f$ frames. Using a concept of ${\delta}$-filters on frames, we characterize almost $Lindel{\ddot{o}}f$ frames and then have their permanence properties. We also show that almost $Lindel{\ddot{o}}f$ regular $D({\aleph}_1)$ frames are exactly $Lindel{\ddot{o}}f$ frames. Finally we construct an almost $Lindel{\ddot{o}}fication$ of a frame L via the simple extension of L associated with the set of all ${\delta}$-filters F on L with ${\bigvee}\{x^*{\mid}x{\in}F\}=e$.

Keywords

References

  1. J. Benabou, Treillis locaux et paratopologies, Seminaire Ehresmann(Topologie et Geometrie Differentielle), 1re annee (1957-8) expose 2, 1958.
  2. X. Chen, Closed homomorphism, Doctoral Dissertation, McMaster University, Hamilton, 1991.
  3. C. Ehresmann, Gattungen von lokalen Strukturen. Jber. Deutsch. Math.-Verein. 60(1957), pp.59-77.
  4. S.S. Hong, Simple extension of frames, Math. Research, 67(1992), pp.156-159.
  5. J.R. Isbell, Atomless parts of locales, Math. Scand., 31(1972), pp. 5-32. https://doi.org/10.7146/math.scand.a-11409
  6. P.T. Johnstone, Tychonoff's Theorem without the axiom of choice, Fund. Math. 113(1981), pp 21-35. https://doi.org/10.4064/fm-113-1-21-35
  7. P.T. Johnstone, Stone spaces, Cambridge Univ. Press, Cambridge, 1982.
  8. M.K. Khang, Lindelofication of biframes, Kangweon-Kyungki Math. Jour.,16(2008), No. 3, pp. 379-388.
  9. M.K. Khang, Lindelofication of frames, Kangweon-Kyungki Math. Jour.,15(2007), No. 2, pp. 87-100.
  10. J. Paseka and B. Smarda, $T_2-frames$ and almost compact frames, Czechoslovak Math. Journal, 42(117)(1992), pp. 385-402.