Application of the Central Composite Design and Response Surface Methodology to the Treatment of Dye using Electrocoagulation/flotation Process

전기응집/부상 공정을 이용한 염료 처리에 중심합성설계와 반응표면분석법의 적용

  • Kim, Dong-Seog (Department of Environmental Science, Catholic University of Daegu) ;
  • Park, Young-Seek (Department of Health & Environment, Daegu University)
  • 김동석 (대구가톨릭대학교 환경과학과) ;
  • 박영식 (대구대학교 보건환경전공)
  • Received : 2009.08.05
  • Accepted : 2009.11.13
  • Published : 2010.01.30

Abstract

This experimental design and response surface methodology (RSM) have been applied to the investigation of the electrocoagulation/flotation of dye wastewater. The electrocoagulation/flotation reactions were mathematically described as a function of parameters current (A), NaCl concentration (B), initial RhB concentration (C) and time (D) being modeled by use of the central composite design (CCD). The application of RSM using the CCD yielded the following regression equation, which is an empirical relationship between the RhB removal (%) and test variables in RhB removal (%) = $-300.42+129.21{\cdot}Current+46.99{\cdot}NaCl-0.11{\cdot}RhB-+43.71{\cdot}Time-5.67{\cdot}Current{\cdot}NaCl-3.18{\cdot}Current{\cdot}Time-2.41{\cdot}NaCl{\cdot}Time-19.79{\cdot}Current^2-2.27{\cdot}NaCl^2-1.59{\cdot}Time^2$. the model predictions agreed well with the experimentally observed result ($R^{2}=0.9728$). The estimated ridge of maximum response and optimal conditions for RhB removal (%) using canonical analysis was 99.4% (A: 1,77 A, NaCl concentration: 2.23 g/L, RhB concentration: 56.12 mg/L, Time: 9.98 min). To confirm this optimum condition, three additional experiments were performed and RhB removal (%) were within range of 86.87% (95% PI low)~111.93% (95% PI high) obtained.

Keywords

References

  1. 박동규(2008). Minitab을 활용한 실험계획법, 기전연구사.
  2. 송원용, 장순웅(2009). UV공정을 이용한 NDMA처리 통계학적 최적화 연구. 수질보전 한국물환경학회지, 25(1). pp. 96-101.
  3. 이승훈(2008). Minitab을 이용한 공학통계 자료분석, 이레테크.
  4. 임용빈, 박성현, 안병진, 김영일(2008). 실용적인 실험계획법 -Design-Expert 7 & Minitab 활용-, 자유아카데미.
  5. 조일형, 박재홍, 김영규, 이홍근(2003). 반응표면분석법을 이용한 염색폐수의 광촉매 산화 처리조건의 최적화. 수질보전 한국물환경학회지, 19(3), pp. 257-270.
  6. 조일형, 이내현, 장순웅, 안상우, 윤영한, 조경덕(2007). 화학적 응집공정에서 요인배치 중시합성설계법을 이용한 축산폐수의 COD 제거특성 평가 및 최적화 연구. 수질보전 한국물환경학회지, 23(1), pp. 111-121.
  7. Aleboyeh, A.. Daneshvar. N.. and Kasiri, M. B. (2008). Optimization of C.I. Acid Red 14 azo dye removes by electrocoagulation batch procedd with response surface methodology. Chem. Eng. and Process., 47, pp. 827-832. https://doi.org/10.1016/j.cep.2007.01.033
  8. Arslan-Alaton, I., Kabdash, Vardar, B., and Tunay, O. (2009). Electrocoagulation of simulated dyebath effluent with aluminium and stainless steel electrodes. Journal of Hazardous Materials. 164. pp. 1586-1594. https://doi.org/10.1016/j.jhazmat.2008.09.004
  9. Cho, I. H. and Zoh, K. D. (2007). Photocatalytic degradation of azo dye (Reactive Red 120) in $TiO_{2}/UV$ system: optimization and modeling using a response surface methodology (RSM) based on the central composite design. Dyes and Pigments, 75, pp. 533-543. https://doi.org/10.1016/j.dyepig.2006.06.041
  10. $Design-Expert{\circledR}$ (2007). Version 7.1 User's guide, Design-Expert.
  11. Do, J. S. and Chen, M. L. (1994). Decolorization of dyecontaining solutions by electrocoagulation. J. Appl. Electrochem., 34, pp. 785-790.
  12. Grimm. J., Bessarabov, D., and Sanderson, R. (1998). Review of electro-assisted methods for water purification. Desalination, 115. pp. 285-294. https://doi.org/10.1016/S0011-9164(98)00047-2
  13. Holt, P. K., Barton, G. W., Wark, M., and Mitchell, C. A. (2002). A quantitative comparison between chemical dosing and electrocoagulation. Colloids and Surfaces, A221 , pp. 223-248.
  14. Juttner, K., Galla, U., and Schmieder, H. (2000). Electrochemical approaches to environmental problems in the process industry. Electrochimica Acta, 45, pp. 2575-2594. https://doi.org/10.1016/S0013-4686(00)00339-X
  15. Kobya, M., Demirbas, E., Can, O. T., and Bayramolu, M. (2006). Treatment of levafix orange textile dye solution by electrocoagulation. Journal of Hazardous Materials, B132, pp.183-188.
  16. Lin, S. H. and Lai, C. H. (2000). Kinetic characteristics of textile wastewater ozonation in fluidized and fixed activated carbon beds. Wat. Res., 34, pp. 763-772. https://doi.org/10.1016/S0043-1354(99)00214-6
  17. Moulai, N. and Tir, M. (2004). Coupling flotation with electroflotation for waste oil/water emulsion treatment. optimization of the operating conditions. Desalination. 161, pp. 115-121. https://doi.org/10.1016/S0011-9164(04)90047-1
  18. Myers, R. H. and Montgomery, D. C. (2002). Response Surface Methodology: Process and Product Optimization usjng Designed Experiments. John Wiley & Sons, New York.
  19. Sun, G. and Xu, X. (1997). Sunflower stalks as adsorbents for color removal from textile wastewater. Ind. Eng. Chem. Res., 36, pp. 808-812. https://doi.org/10.1021/ie9603833
  20. Tsai, C. T., Lin, S. T., Shue, Y. C., and Su, P. L. (1997). Electrolysis of soluble organic matter in leachate from landfills. Wat. Res., 31 , pp. 3073-3081. https://doi.org/10.1016/S0043-1354(96)00297-7
  21. Vlyssides, A. G., Karlis, P., K., Loizidoy, A., and Arapoglou, D. (2001). Treatment of leachate from a domedtic solid waste sanitary landfill by an electrolysis system. Environ. Technol., 22, pp. 1467-1476. https://doi.org/10.1080/09593332208618184