Estimation of Specific Yield Using Rainfall and Groundwater Levels at Shallow Groundwater Monitoring Sites

충적층 지하수 관측지점의 강우량 대비 지하수위 변동 자료를 활용한 비산출율 추정

  • 김규범 (한국수자원공사 K-water연구원)
  • Received : 2010.03.08
  • Accepted : 2010.04.20
  • Published : 2010.06.01

Abstract

Specific yield is an essential parameter of the water table fluctuation method for recharge calculation. Specific yield is not easily estimated because of limited availability of aquifer test data and soil samples at National Groundwater Monitoring Stations in South Korea. The linear relationship between rainfall and water level rise was used to estimate the specific yields of aquifer for 34 shallow monitoring wells which were grouped into three clusters. In the case of Cluster-1 and Cluster-2, this method was not applicable because of low cross correlation between rainfall and water level rise and also a long lag time of water level rise to rainfall. However, the specific yields for 19 monitoring wells belonging to Cluster-3, which have relatively high cross correlation and short lag time, within 2 days after rainfall, range from 0.06 to 0.27 with mean value of 0.17. These values are within the general range for sand and gravel sediments and similar to those from aquifer test data. A detailed field survey is required to identify monitoring sites that are not greatly affected by pumping, stream flow, evapotranspiration, or delayed response of water levels to rainfall, because these factors may cause overestimation of specific yield estimates.

국가지하수관측소와 같은 관측 지점에서의 지하수 시계열 자료를 활용한다면 지하수위 변동법에 의한 지하수 함양율을 산정할 수 있으나, 비산출율 추정에 필요한 양수시험 자료와 토양시료 등의 부족으로 적용에 제약이 있어 왔다. 본 연구에서는 3개의 군집에 속하는 34개 국가지하수 관측망의 충적 관측정을 대상으로 갈수기의 강우 이벤트와 지하수위 상승량 관계를 이용한 비산출율 산정 기법을 적용해 보았다. 군집 1과 군집 2에 속하는 관측정은 강우에 대한 지하수위 반응이 뚜렷하지 않기 때문에 본 방법의 적용이 곤란하며, 군집 3에서 강우에 대한 지하수위 반응 시차가 2일 이내인 19개 관측정의 경우는 추정 비산출율이 0.06에서 0.27의 범위로써 평균 0.17로 분석되었는데 이는 토양 입자에 따른 비산출율 및 양수시험에 의한 비산출율과 유사한 것으로 나타났다. 본 방법은 주변 하천과의 관계, 배출 작용, 증발산 및 양수 등의 영향으로 일부 과다 산정의 우려가 있으나 현장조사를 통하여 주변 영향이 적은 국가지하수 관측정을 선정한다면 적용 가능하다.

Keywords

Acknowledgement

Supported by : 수자원의 지속적인 확보기술개발사업단

References

  1. 건설교통부(2002), 지하수관리 기본계획, 건설교통부, pp. 1-112.
  2. 구민호, 김형수(2001), 지하수 및 토양의 온도관측 자료를 이용한 함양량 산정기법, 추계학술발표회 논문집, 한국지하수토양환경학회, pp. 83-87.
  3. 구민호, 이대하(2002), 지하수위 변동법에 의한 지하수 함양량 산정의 수치해석적 분석, 대한지질학회지, Vol. 38, No. 3, pp. 407-420.
  4. 김규범, 염병우(2007), 국가지하수관측소 충적관측정의 수위 변동 유형 분류 및 특성 비교, 지하수토양환경, Vol. 12, No. 5, pp. 86-97.
  5. 김규범, 이명재, 김정우, 이진용, 이강근(2004), 수위강하곡선을 이용한 함양량 추정기법의 국가지하수 관측소 지하수위 자료에의 적용성 평가, 지질공학, Vol. 14, No. 3, pp. 313-323.
  6. 한국수자원공사(1993), 지하수자원기본조사 보고서, 한국수자원공사, pp. 1-342.
  7. 한국수자원공사(1995), 지하수자원 기본조사(3차) : 지하수 관리조사 보고서, 건설교통부, pp. 1-349.
  8. 한국수자원공사(1999), 지하수위 장기관측 자료를 활용한 함양량 산정기법 연구 보고서, 건설교통부, pp. 1-165.
  9. 한국수자원공사(2003), 제주도 수문지질 및 지하수자원 종합조사(III), 제주도, pp. 1-425.
  10. 한국수자원공사(2005), 국가지하수 관측망 주변현황조사 및 변동 특성분석 보고서, 건설교통부, pp. 1-184.
  11. Armstrong, D. and Narayan, K.(1998), Using Groundwater Responses to Infer Recharge, CSIRO Publ. Collingwood, Australia, pp. 1-20.
  12. Childs, E. C.(1960), The Nonsteady State of the Water Table in Drained Land, Journal of Geophysical Research, Vol. 65, No. 2, pp. 780-782. https://doi.org/10.1029/JZ065i002p00780
  13. Crosbie, R. S., Binning, P. and Kalma, J. D.(2005), A Time Series Approach to Inferring Groundwater Recharge using the Water Table Fluctuation Method, Water Resources Research, Vol. 41, W01008, doi:10-1029/2004WR003077.
  14. Duke, H. R.(1972), Capillary Properties of Soils-Influence upon Specific Yield, Transaction of the ASAE, Vol. 15, No. 4, pp. 688-691. https://doi.org/10.13031/2013.37986
  15. Freezy, R. A. and Cherry, J. A.(1979), Groundwater, Prentice-Hall, Inc., Engelwood Cliffs, NJ. pp. 1-604.
  16. Gehart, J. M.(1986), Ground Water Recharge and its Effects on Nitrate Concentration beneath a Manured Field Site in Pennsylvania, Groundwater, Vol. 24, No. 4, pp. 483-489. https://doi.org/10.1111/j.1745-6584.1986.tb01027.x
  17. Healy, R. W. and Cook, P. G.(2002), Using Groundwater Levels to Estimate Recharge, Hydrogeology Journal, Vol. 10, No. 2, pp. 91-109. https://doi.org/10.1007/s10040-001-0178-0
  18. Heliotis, F. D. and DeWitt, C. B.(1987), Rapid Water Table Responses to Rainfall in a Northern Peatland Ecosystem, Water Resources Bulletin, Vol. 23, No. 6, pp. 1011-1016. https://doi.org/10.1111/j.1752-1688.1987.tb00850.x
  19. Johnson, A. I.(1967), Specific Yield-Compilation of Speicific Yields for Various Materials, U.S. Geological Survey Water-Supply Paper 1662-D, pp. 1-74.
  20. Klute, A.(1986), Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods: Agronomy series No.9, 2nd Edition, Americal Society of Agronomy, Madison, WI, pp. 1-1180.
  21. Lohman, S. W. and the Committee on Redefinition of Ground Water Terms(1972), Definitions of Selected Groundwater Terms-Revisions and Conceptual Refinements, U.S. Geological Survey, Water-Supply Paper 1988, pp. 1-21.
  22. Lorenz, D. L and Delin, G. N.(2007), A Regression Model to Estimate Regional Groundwater Recharge, Groundwater, Vol. 45, No. 2, pp. 196-208. https://doi.org/10.1111/j.1745-6584.2006.00273.x
  23. Meinzer, O. E.(1923), The Occurrence of Groundwater in the United States with a Discussion of Principles, U.S. Geological Survey, Water Supply Paper 489, pp. 1-321.
  24. Moench, A. F.(1997), Flow to a Well of Finite Diameter in a Homogeneous, Anisotropic Water Table Aquifer, Water Resources Research, Vol. 33, No. 6, pp. 1397-1407. https://doi.org/10.1029/97WR00651
  25. Nachabe, M. H.(2002), Analytical Expressions for Transient Specific Yield and Shallow Water Table Drainage, Water Resources Research, Vol. 38, No. 10, p. 1193. https://doi.org/10.1029/2001WR001071
  26. Neuman, S. P.(1974), Effects of Partial Penetration of Flow in Unconfined Aquifers Considering Delayed Aquifer Response, Water Resources Research, Vol. 10, No. 2, pp. 303-312. https://doi.org/10.1029/WR010i002p00303
  27. Olmsted, F. H. and Hely, A. G.(1962), Relation between Ground Water and Surface Water in Brandywine Creek Basin, Pennsylvania, U.S. Geological Survey Professional Paper 417-A, pp. 1-21.
  28. Prill, R. C., Johnson, A. I. and Morris, D. A.(1965), Specific Yield-Laboratory Experiments Showing the Effect of Time on Column Experiments, U.S. Geological Survey Water-Supply Paper 1662-B, pp. 1-55.
  29. Rasmussen, W. C. and Andreasen, G. E.(1959), Hydrologic Budget of the Beaverdam Creek Basin, Maryland, U.S. Geological Survey Water-Supply Paper 1472, pp. 1-106.
  30. Risser, D. W., Gburek, W. J. and Folmar, G. J.(2005), Comparison of Methods for Estimating Groundwater Recharge and Base Flow at a Small Watershed Underlain by Fractured Bedrock in the Eastern United States, U.S. Geological Survey Scientific Investigations Report 2005-5038, pp. 1-37.
  31. Rosenberry, D. O. and Winter, T. C.(1997), Dynamics of Water Table Fluctuations in an Upland between Two Prairie-pothole Wetlands in North Dakota, Journal of Hydrology, Vol. 191, pp. 266-289. https://doi.org/10.1016/S0022-1694(96)03050-8
  32. Sloto, R. A.(1990), Geohydrology and Simulation of Ground Water Flow in the Carbonate Rocks of the Valley Creek Basin, Eastern Chester County, Pennsylvania, U.S. Geological Survey Water Resources Investigation Report 89-4169, pp. 1-60.
  33. Walton, W. C.(1970), Groundwater Resources Evaluation, McGraw- Hill Book Company, N.Y, pp. 1-664.
  34. Weeks, E. P.(2002), The Lisse Effect Revisited, Groundwater, Vol. 40, No. 6, pp. 652-656. https://doi.org/10.1111/j.1745-6584.2002.tb02552.x