Endless debates on the extant basal-most angiosperm

현생 기저 피자식물에 대한 끝나지 않는 논쟁

  • Kim, Sangtae (School of Biological Sciences and Chemistry and Basic Science Research Institute, Sungshin Women's University)
  • 김상태 (성신여자대학교 생명과학화학부, 기초과학연구소)
  • Received : 2010.02.01
  • Accepted : 2010.03.19
  • Published : 2010.03.31

Abstract

Recognizing a basal group in a taxon is one of the most important factors involved in understanding the evolutionary history of that group of life. Many botanists have suggested a sister to all other angiosperms to understand the origin and rapid diversification of angiosperms based on morphological and fossil evidence. Recent technical advances in molecular biology and the accumulation of molecular phylogenetic data have provided evidence of the extant basal-most angiosperm which is a sister to all other angiosperms. Although it is still arguable, most plant taxonomists agree that Amborella trichopoda Baill., a species (monotypic genus and monotypic family) distributed in New Caledonia, is a sister to all other extant angiosperms based on evidence from the following molecular approaches: 1) classical phylogenetic analyses based on multiple genes (or DNA regions), 2) analyses of a tree network of duplicated gene families, and 3) gene-structural evidence. As an alternative hypothesis with relatively minor evidence, some researchers have also suggested that Amborella and Nymphaeaceae form a clade that is a sister to all other angiosperms. Debate regarding the basal-most angiosperms is still ongoing and is currently one of the hot issues in plant evolutionary biology. We expect that sequencing of the whole genome of Amborella as an evolutionary model plant and subsequent studies based on this genome sequence will provide information regarding the origin and rapid diversification of angiosperms, which is Darwin's so called abominable mystery.

한 분류군의 진화의 역사를 파악하기 위해서는 분류군 내에서 가장 먼저 분지한 군(기저군)을 알아내는 것이 중요하다. 피자식물의 계통과 진화를 이해하고자 많은 식물학자들은 형태적 연구와 화석적 증거에 의해 현존하는 피자식물들 중 가장 먼저 분지하여 다른 모든 피자식물들과 자매군을 형성하는 분류군을 파악하려고 노력해 왔다. 최근 분자계통학의 기술적 발달과 자료의 축적으로 현생 기저 피자식물군에 대한 객관적 증거들이 제시되고 있다. 여전히 논쟁의 여지는 있지만, 대부분의 식물계통학자들은 1) 다수의 유전자들의 계통분석적 접근, 2) 복제된 두 유전자군의 계통수 네트웍 형성법, 3) 유전자의 구조적 접근 등의 분자적 증거에 의해 현생 기저 피자식물이 뉴칼레도니아에 자생하는 1과 1속 1종 식물인 Amborella trichopoda Baill.임에 동의하고 있다. 그러나 또 다른 가능성으로 Nymphaeaceae (수련과)와 A. trichopoda가 하나의 분계조를 형성하고 형성된 분계조가 다른 모든 피자식물의 자매군임을 지지하는 증거들도 일부 제시되어 현생 기저 피자식물에 대한 논쟁은 계속되고 있다. 현대 분자생물학적인 신기술의 발달은 대량의 분자적 자료를 제공하고 있어 이들 논쟁 해결의 실마리를 제공해 주고 있고, 진화적 모델식물로서의 Amborella 전체 유전체의 염기서열 결정과 이에 대한 파생연구는 Darwin이 지독하게 풀리지 않는 미스터리라 표현한 피자식물의 기원과 분화에 대한 해답을 제시해 줄 수 있을 것으로 기대된다.

Keywords

References

  1. Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815. https://doi.org/10.1038/35048692
  2. Albert, V. A., D. E. Soltis, J. E. Carlson, W. G. Farmerie, P. K. Wall, D. C. Ilut, T. M. Solow, L. A. Mueller, L. L. Landherr, Y. Hu, M. Buzgo, S. Kim, M-J. Yoo, M. W. Frohlich, R. Perl-Treves, S. E. Schlarbaum, B. J. Bliss, X. Zhang, S. D. Tanksley, D. G. Oppenheimer, P. S. Soltis, H. Ma, C. W. dePamphilis and J. H . Leebens-Mack. 2005. Floral gene resources from basal angiosperms for comparative genomics research. BMC Plant BioI. 5: 1-15. https://doi.org/10.1186/1471-2229-5-1
  3. Bailey, I. W. and B. G. L. Swamy. 1948. Amborella trichopoda Baill.: a new morphological type of vesselless dicotyledons. J. Arnold Arb. 29: 245-254.
  4. Baillon, H. 1869. Histoire des Plantes. Vol. I. L. Hachette and Cie, Paris, London, Leipzig.
  5. Barkman, T. J., G. Chenery, J. R. McNeal, J. Lyons-Weile, W. J. Ellisens, G. Moore, A. D. Wolfe and C. W. dePamphilis. 2000. Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny. Proc. Natl. Acad. Sci. USA 97: 13166-13171. https://doi.org/10.1073/pnas.220427497
  6. Barrett, P. M. and K. J. Willis. 2001. Did dinosaurs invent flowers? Dinasaur-angiosperm coevolution revisited. BioI. Rev. 76: 411-447. https://doi.org/10.1017/S1464793101005735
  7. Bentham, G. and J. D. Hooker. 1880. Genera Plantarum, III(1). Teeve and Company, London.
  8. Bessey, C. E. 1915. Phylogenetic taxonomy of flowering plants. Ann. Mo. Bot. Gard. 2: 19-50.
  9. Borsch, T., K. W. Hilu, D. Quandt, V. Wilde, C. Neinhuis and W. Barthlott. 2003. Non-coding plastid trnT-trnF sequences reveal a well resolved phylogeny of basal angiosperms. J. Evol. BioI. 16: 558-576. https://doi.org/10.1046/j.1420-9101.2003.00577.x
  10. Buzgo, M., D. E. Soltis, P. S. Soltis and H. Ma. 2004a. Towards a comprehensive integration of morphological and genetic studies of floral development. Trends Plant Sci. 9: 164-173. https://doi.org/10.1016/j.tplants.2004.02.003
  11. Buzgo, M., P. S. Soltis and D. E. Soltis. 2004b. Floral developmental morphology of Amborella trichophoda (Amborellaceae). Int. J. Plant Sci. 165: 925-947. https://doi.org/10.1086/424024
  12. Chase, M. W., D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les, B. D. Mishler, M. R. Duvall, R. A. Price. H. G. Hills, Y.-L. Qiu. K. A. Kron, J. H. Rettig, E. Conti, J. D. Palmer, J. R. Manhart, K. J. Sytsma, H. J. Michael, W. J. Kress, K. G. Karol, W. D. Clark, M. Hedren, B. S. Gaut, R. K. Jansen, K.-J. Kim, C.-F. Wimpee, J. F. Smith, G. R. Furnier. S. H. Strauss, Q. Y. Xiang, G. M. Plunkett, P. S. Soltis, S. M. Swensen, S. E. Williams, P. A. Gadek, C. J. Quinn, L. E. Eguiarte, E. Golenberg, G. H. Learn Jr., S. W. Graham, S. C. H. Barrett, S. Dayanandan and V. A. Albert. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gard. 80: 528-580. https://doi.org/10.2307/2399846
  13. Coen, E. S. and E. M. Meyerowitz. 1991. The war or the whorls: genetic interactions controlling flower development. Nature 353:3-37. https://doi.org/10.1038/353003a0
  14. Crane, P. R., E. M. Friis and K. J. Pedersen. 1995. The origin and early diversification of angiosperms. Nature 374: 27-33. https://doi.org/10.1038/374027a0
  15. Cronquist, A. 1981. An Integrated System of Classification of Flowering Plnats. Columbia University Press, New York.
  16. Cui, L., P. K. Wall, J. H. Leebens-Mack, B. G. Lindsay, D. E. Soltis, J. J. Doyle, P. S. Soltis, J. E. Carlson, K. Arumuganathan, A. Barakat, V. A. Albert, H. Ma and C. W. dePamphilis, 2006. Widespread genome duplications throughout the history of flowering plants. Genome Res. 16: 738-749. https://doi.org/10.1101/gr.4825606
  17. Darwin, F. and A. C. Seward eds. 1903. More Letters of Charles Darwin. Vol. 2. John Murray. London.
  18. Dilcher. D. L. and P. R. Crane. 1984. Archaeanthus: An early angiosperm from the Cenomanian of the western interior of North America. Ann. Missouri Bot. Gard. 71: 351-383. https://doi.org/10.2307/2399030
  19. Doyle, J. A. and C. L. Hotton. 1991. Diversification of early angiosperm pollen in a cladistic context. In Pollen and Spores. Patterns of Diversification. Blackmore, S. and S. H. Barnes (eds.), Clarendon, Oxford. Pp. 169-195.
  20. Ehrendorfer, F., F. Krendl, E. Habeler and W. Sauer. 1968. Chromosome numbers and evolution in primitive angiosperms. Taxon 17: 331-353. https://doi.org/10.2307/1217729
  21. Eichler, A. W. 1883. Syllabus der Vorlesungen uber Phanerogamenkunde. 3rd Ed. Berlin.
  22. Engler, A. 1964. Syllabus der Pflanzenfamilien. 12th ed. Vol. 2, H. Melchior and E. Werdermann (eds.), Gebruder Borntraeger, Berlin.
  23. Felsenstein, J. 1978. Case in which parsimony and compatibility methods will be positively misleading. Syst. Zool. 27: 401-410. https://doi.org/10.2307/2412923
  24. Floyd, S. K. and W. E. Friedman. 2001. Developmental evolution of endosperm in basal angiosperms: evidence from Amborella (Amborellaceae). Nuphar (Nymphaeaceae), and Illicium (Illiciaceae). Plant Syst. Evol. 228: 153-169. https://doi.org/10.1007/s006060170026
  25. Friedman, E. F. 2008. Hydatellacea are water lilies with gymnospermous tendencies. Nature 453: 94-91. https://doi.org/10.1038/nature06733
  26. Friis, E. M., K. R. Pedersen and P. R. Crane. 2001. Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Nature 410: 351-360.
  27. Friis, E. M., K. R. Pedersen and P. R. Crane. 2006. Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Paleogeogr. Paleoclimatol. Paleoecol. 232: 251-293. https://doi.org/10.1016/j.palaeo.2005.07.006
  28. Goremykin V. V., K. I. Hirsch-Ernst, S. Wolfl and F. H. Hellwig. 2004. The chloroplast genome of Nymphaea alba: Whole-genome analyses and the problem of identifying the most basal angiosperm. Mol. Biol. Evol. 21: 1445-1454. https://doi.org/10.1093/molbev/msh147
  29. Goremykin, V. V., Viola, R. and F. H. Hellwig. 2009. Removal of noisy characters from chloroplast genome-scale data suggests revision of phylogenetic placement of Amborella and Ceratophyllum. J. Molec. Evol. 68: 191-204.
  30. Goremykin, V. V., K. I. Hirsch-Ernst, S. Wolfl and F. H. Hellwig. 2003. Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Mol. Biol. Evol. 20: 1499-1505. https://doi.org/10.1093/molbev/msg159
  31. Gottsberger, G. 1914. The Structure and function of the primitive angiosperm flower-a discussion. Acta Bot. Neerl. 23: 461-411.
  32. Graham, S. W. and R. G. Olmstead. 2000. Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. Amer. J. Bot. 81: 1112-1230.
  33. Hilu, K. W., T. Borsch, K. Muller, D. E. Soltis, P. S. Soltis, V. Savolainen, M. W. Chase, M. Powell, L. Alice, R. Evans, H. Sauquet, C. Heinhuis, T. A. B. Slotta, J., Rohwer, C. S. Campbell and L. W. Chatrou. 2003. Angiosperm phylogeny based on matK sequence information. Amer. J. Bot. 90: 1758-1776. https://doi.org/10.3732/ajb.90.12.1758
  34. International Rice Genome Sequencing Project. 2005. The map-based sequence of the rice genome. Nature 436: 793-800. https://doi.org/10.1038/nature03895
  35. Jaillon, O., J.-M. Aury, B. N., A. Policriti, C. Clepet, A. Casagrande, N. Choisne, S. Aubourg, N. Vitulo, C. Jubin, A. Vezzi, F. Legeai, P. Hugueney, C. Dasilva, D. Horner, E. Mica, D. Jublot, J. Poulain, C. Bruyere, A. Billault, B. Segurens, M. Gouyvenoux, E. Ugarte, F. Cattonaro, V. Anthouard, V. Vico, C. D. Fabbro, M. Alaux, G. D. Gaspero, V. Dumas, N. Felice, S. Paillard, I. Juman, M. Moroldo, S. Scalabrin, A. Canaguier, I. L. Clainche, G. Malacrida, E. Durand, G. Pesole, V. Laucou, P. Chatelet, D. Merdinoglu, M. Delledonne, M. Pezzotti, A. Lecharny, C. Scarpelli, F. Artiguenave, M. E. Pe, G. Valle, M. Morgante, M. Caboche, A.-F. Adam-Blondon, J. Weissenbach, F. Quetier and P. Wincker. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: 463-461. https://doi.org/10.1038/nature06148
  36. Jansen, R. K., Z. Cai, L. A. Raubeson, H. Daniell, C. W. dePamphilis, J. Leebens-Mack, K. F. Muller, M. Guisinger-Bellian, R. C. Haberle, A. K. Hansen. T. W. Chumley, S.-B. Lee, Rhiannon Peery, J. R. McNeal, J. V. Kuehl and J. L. Boore. 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc. Natl. Acad. Sci. U.S.A. 49: 19369-19314.
  37. Judd, W. S., C. S. Campbell, E. A. Kellog, P. F. Stevens and M. J. Donoghue. 2008. Plant Systematics-A Phylogenetic Approach. Third ed. Sinauer Associates, Sunderland.
  38. Kim, S., D. E. Soltis, P. S. Soltis, M. J. Zanis and Y. Suh. 2004a. Phylogenetic relationships among early-diverging eudicots based on four genes: Were the eudicots ancestrally woody? Mol. Phylogenet. Evol. 31: 16-30. https://doi.org/10.1016/j.ympev.2003.07.017
  39. Kim, S., J. Koh. M.-J.Yoo, Hongzhi Koog, Y. Hu, H. Ma, P. S. Soltis and D. E. Soltis. 2005. Expression of floral MADS-box genes in basal angiosperms: implications on evolution of floral regulators and the perianth, Plant J. 43: 724-744. https://doi.org/10.1111/j.1365-313X.2005.02487.x
  40. Kim, S., M.-J. Yoo, V. A. Albert, J. S. Farris, P. S. Soltis and D. E. Soltis. 2004b. Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. Amer. J. Bot. 91: 2102-2118. https://doi.org/10.3732/ajb.91.12.2102
  41. Labandeira. C. C., D. L. Dilcher, D. R. Davis and D. L. Wagner. 1994. Ninety-seven million years or angiosperm-insect association: Paleobiological insights into the meaning of coevolution. Proc. Natl. Acad. Sci. U.S.A. 91: 12278-12282. https://doi.org/10.1073/pnas.91.25.12278
  42. Magallon, S. A. and M. J. Sanderson. 2005. Angiosperm divergence times: the effect of genes, codon positions, and time contraints. Evolution 59: 1653-1670.
  43. Margulies, M., M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Bemben, J. Berka, M. S. Braverman, Y.-J. Chen, Z. Chen, S. B. Dewell, L. Du, J. M. Fierro, X. V. Gomes, B. C. Godwin, W. He, S. Helgesen, C. H. Ho, G. P. lrzyk, S. C. Jando, M. L. I. Alenquer, T. P. Jarvie, K. B. Jirage, J.-B. Kim, J. R. Knight, J. R. Lanza, J. H. Leamon, S. M. Lefkowitz, M. Lei, J. Li, K. L. Lohman, H. Lu, V. B. Makhijani, K. E. McDade, M. P. McKenna, E. W. Myers, E. Nickerson, J. R. Nobile, R. Plant, B. P. Puc, M. T. Ronan, G. T. Roth, G. J. Sarkis, J. F. Simons, J. W. Simpson, M. Srinivasan, K. R. Tartaro, A. Tomasz, K. A. Vogt, G. A. Volkmer, S. H. Wang, Y. Wang, M. P. Weiner, P. Yu, R. F. Begley and J. M. Rothberg. 2005. Genome sequencing in microfabricated high-densiry picolitre reactors. Nature 437: 376-380.
  44. Mathews, S. and M. J. Donoghue. 1999. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286: 947-949. https://doi.org/10.1126/science.286.5441.947
  45. Ming, R., S. Hou, Y. Feng, Q. Yu, A. Dionne-Laporte, J. H. Saw, P. Senin, W. Wang, B. V. Ly, K. L. T. Lewis, S. L. Salzberg, L. Feng, M. R. Jones, R. L. Skelton, J. E. Murray, C. Chen, W. Qian, J. Shen, P. Du, M. Eustice, E. Tong, H. Tang, E. Lyons, R. E. Paull, T. P. Michael, K. Wall, D. W. Rice, H. Albert, M.-L. Wang, Y. J. Zhu, M. Schatz, N. Nagarajan, R. A. Acob, P. Guan, A. Blas, C. M. Wai, C. M. Ackerman, Y. Ren, C. Liu, J. Wang, J. Wang, J.-K. Na, E. V. Shakirov, B. Haas, J. Thimmapuram, D. Nelson, X. Wang, J. E, Bowers, A. R. Gschwend, A. L. Deicher, R. Singh, J. Y. Suzuki, S. Tripathi, K. Neupane, H. Wei, B. Irikura, M. Paidi, N. Jiang, W. Zhang, G. Presting, A. Windsor, R. Navajas-Perez, M. J. Torres, F. A. Feltus, B. Porter, Y. Li, A. M. Burroughs, M.-C. Luo, L. Liu, D. A. Christopher, S. M. Mount, P. H. Moore, T. Sugimura, J. Jiang, M. A. Schuler, V. Friedman, T. Mitchell-Olds, D. E, Shippen, C. W. dePamphilis. J. D. Palmer, M. Freeling, A. H. Paterson, D. Gonsalves, L. Wang and M. Alam. 2008. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452: 991-997. https://doi.org/10.1038/nature06856
  46. Mishler, B. D. 1994. Cladistic analysis of molecular and morphological data. Am. J. Phys. Anthropol. 94: 143-156. https://doi.org/10.1002/ajpa.1330940111
  47. Mishler, B. D., P. S. Soltis and D. E. Soltis. 1998. Compartmentalization in Phylogeny Reconstruction: Philosophy and Practice. DIMACS Report. Princeton.
  48. Money, L. L., I. W. Bailey and B. G. L. Swamy. 1952. The morphology and relationships of the Monimiaceae. J. Arnold Arb. 31: 372-404.
  49. Moore, M. J., C. D. Bell, P. S. Soltis and D. E. Soltis. 2007. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc. Natl. Acad. Sci. U.S.A. 104: 19363-19368. https://doi.org/10.1073/pnas.0708072104
  50. Parkinson, C. L., K. L. Adams and J. D. Palmer. 1999. Multigene analyses identify the three earliest lineages of extant flowering plants. Curr. Biol. 9: 1485-1448. https://doi.org/10.1016/S0960-9822(00)80119-0
  51. Pax, F. 1889. Monimiaceae. In Die Naturlichen Pflanzenfamilien, III(2). Englar, A. and K. Prantl (eds.), W. Engelmann, Leipzig. Pp. 94-105.
  52. Perkins, J. 1925. Ubersicht uber die Gattungen der Monimiaceae. W. Engelmann, Leipzig.
  53. Perkins, J. and E. Gilg. 1901 . Monimiaceae. In Das Pflanzenreich, V(101). Engler, A. (ed.), W. Engelmann, Leipzig. Pp. 1-122.
  54. Pichon, P. 1948. Les Monimiacees, famille heterogene. Bull. Mus. Nat. Hist. Nat. Paris 20: 383-384.
  55. Posluszny, U. and B. P. Tomlinson. 2003. Aspects of inflorescence and floral development in the putative basal angiosperm Amborella trichopoda (Amborellaceae). Can. J. Bot. 81: 28-39. https://doi.org/10.1139/b03-004
  56. Qiu, Y.-L., J. Lee, F. Bernasconi-Quadroni, D. E. Soltis, P. S. Soltis, M. Zanis, E. A. Zimmer, Z. Chen, V. Savolainen and M. W. Chase. 1999. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402: 404-407. https://doi.org/10.1038/46536
  57. Qiu, Y.-L., J. Lee, F. Bernasconi-Quadroni, D. E. Soltis, P. S. Soltis, M. Zanis, E. A. Zimmer, Z. Chen, V. Savolainen and M. W. Chase. 2000. Phylogeny of basal angiosperms: analyses of five genes from three genomes. Int. J. Plant. Sci. 161 : S3-S27. https://doi.org/10.1086/317584
  58. Qiu, Y.-L., O. Dombrovska, J. Lee, L. Li, B. A. Whitlock, R. Bernasconi-Quadroni, J. S. Rest, C. C. Davis, T. Borsch, K. W. Hilu, S. S. Renner, D. E. Soltis, P. S. Soltis, M. J. Zanis, J. J. Cannone, R. R. Gutell, M. Powell, V. Savolainen, L. W. Chatrou and M. W. Chase. 2005. Phylogenetic analyses of basal angiosperns based on nine plastid, mitochondrial, and nuclear genes. Int. J. Plant Sci. 166: 815-842. https://doi.org/10.1086/431800
  59. Sarrela, J. M., H. S. Rai, J. A. Doyle, P. K. Endress, S. Mathews, A. D. Marchant, B. G. Briggs and S. W. Graham. 2007. Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature 446: 312-315. https://doi.org/10.1038/nature05612
  60. Savolainen, V., M. W. Chase, S. B. Hoot, C. M. Morton, D. E. Soltis, C. Bayer, M. F. Fay, A. Y. de Bruijn, S. Sullivan and Y.-L. Oiu. 2000. Phylogenetics of flowering plants based upon a combined analysis of plastid atpB and rbcL gene sequences. Syst. Biol. 49: 306-362.
  61. Soltis, D. E., A. E. Senters, M. J. Zanis, S. Kim, J. D. Thompson, P. S. Soltis, L. P. Ronse de Craene, P. K. Endress and J. S. Farris. 2003. Gunnerales are sister to other core eudicots and exhibit some floral features of early-diverging eudicots. Amer. J. Bot. 90: 461-470. https://doi.org/10.3732/ajb.90.3.461
  62. Soltis. D. E., P. S. Soltis, D. L. Nickrent, L. A. Johnson, W. J. Hahn, S. B. Hoot, J. A. Sweere, R. K. Kuzoff, K. A. Kron, M. W. Chase, S. M. Swensen, E. A. Zimmer, S. M. Chaw, L. J. Gillespie, W. J. Kress and K. J. Sytsma. 1997. Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Ann. Missouri Bot. Gard. 84: 149.
  63. Soltis, D. E., P. S. Soltis, M. W. Chase, M. E. Mort, D. C. Albach, M. Zanis, V. Savolainen, W. H. Hahn, S. B. Hoot, M. F. Fay, M. Axtell, M. S. M. Swensen, L. M. Prince, W. J. Kress, K. C. Nixon and J. S. Farris. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot. J. Linn. Soc. 133: 381-461.
  64. Soltis, D. E., P. S. Soltis, V. A. Albert, D. G. Oppenheimer, C. W. dePamphilis, H. Ma, M. W. Frohlich and G. Theissen. 2002. Missing links: the genetic architecture of flower and floral diversification. Trends Plant Sci. 7: 22-31. https://doi.org/10.1016/S1360-1385(01)02098-2
  65. Soltis, D. E., V. A. Albert, J. Leebens-Mack, J. D. Palmer, R. A. Wing, C. W. dePamphilis, H. Ma, J. E. Carlson, N. Altman, S. Kim, P. K. Wall, A. Zuccolo and P. S. Soltis. 2008. The Amborella genome: an evolutionary reference for plant biology. Genome Biol. 9: 402. https://doi.org/10.1186/gb-2008-9-3-402
  66. Soltis, P. S., D. E. Soltis and M. W. Chase. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402: 402-403. https://doi.org/10.1038/46528
  67. Soltis, P. S., D. E. Soltis, M. J. Zanis and S. Kim. 2000. Basal lineages of angiosperms: relationships and implications for floral evolution. Int. J. Plant Sci. 161: S97-S107. https://doi.org/10.1086/317581
  68. Soltis, P. S. D. E. Soltis. 2004. Amborella not a "basal angiosperm"? Not so fast. Amer. J. Bot. 91 : 997-1001. https://doi.org/10.3732/ajb.91.6.997
  69. Soltis, D. E., V. A. Albert, S. Kim, M.-J. Yoo, P. S. Soltis, M. W. Frohlich, J. Leebens-Mack, H. Kong, K. Wall, C. W. dePamphilis and H. Ma. 2005. Evolution of the flower. In Plant Diversity and Evolution: Genotypic and Phenotypic Variation in Higher Plants. Henry, R. (ed), CABI Publishing, Cambridge.
  70. Stebbins, G. L. 1950. Variation and Evolution in Plants. Columbia University Press, New York.
  71. Stefanovic, S., D. W. Rice and J. D. Palmer. 2004. Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots? BMC Evol. Biol. 4: 35. https://doi.org/10.1186/1471-2148-4-35
  72. Sun, G., D. L. Dilcher, S. Zheng and Z. Shou. 1998. In search of the first flower: a Jurassic angiosperm, Archaefructus, from Northest China. Science 282: 1692-1695. https://doi.org/10.1126/science.282.5394.1692
  73. Sun, G., Q. Li and D. L. Dilcher. 2002. Archaefructaceae. a new basal angiosperm family. Science 296: 899-904. https://doi.org/10.1126/science.1069439
  74. Sworfford, D. L. 2001. $PAUP^\ast$ 4.0b10: Phylogenetic Analysis Using Parsimony ($^\ast{and}$ Other Methods). Sinauer Associates. Sunderland.
  75. Takhtajan, A. 1959. Die Evolution der Angiospermen. Gustav Fischer Verlag, Jena.
  76. Takhtajan, A. 1966. Systema et phylogenia Magnoliophytorum. Nauka, Moscow, Leningrad.
  77. Takhtajan, A. 1980. Outline of the classification of flowering plants (Magnoliophyta). Bot. Rev. 46: 255-359.
  78. Takhtajan, A., 1997. Diversity and Classification of Flowering Plants. Columbia University Press. New York.
  79. Tuskan, G. A., S. DiFazio, S. Jansson, J. Bohlmann, I. Grigoriev, U. Hellsten, N. Putnam, S. Ralph, S. Rombauts, A. Salamov, J. Schein, L. Sterck, A. Aerts, R. R. Bhalerao, R. P. Bhalerao, D. Blaudez, W. Boerjan, A. Brun, A. Brunner, V. Brunner, V. Busov, M. Campbell, J. Carlson, M. Chalot, J. Chapman, G.-L. Chen, D. Cooper, P. M. Coutinho, J. Couturier, S. Covert, Q. Cronk, R. Cunningham, J. Davis, S. Degroeve, A. Dejardin, C. dePamphilis, J. Detter, B. Dirks, I. Dubchak, S. Duplessis, J. Ehiting, B. Ellis, K. Gendler, D. Goodstein, M. Gribskov, J. Grimwood, A. Groover, L. Gunter, B. Hambefger, B. Heinze, Y. Helariutta, B. Henrissat, D. Holligan, R. Holt, W. Huang, N. Islam-Faridi, S. Jones, M. Jones-Rhoades, R. Jorgensen, C. Joshi, J. Kangasjarvi, J. Karlsson, C. Kelleher, R. Kirkpatrick, M. Kirst, A. Kohler, U. Kalluri, F. Larimer, J. Leebens-Mack, J.-C. Leple, P. Locascio, Y. Lou, S. Lucas, F. Martin, B. Montanini, C. Napoli, D. R. Nelson, C. Nelson, K. Nieminen, O. Nilsson, V. Pereda, G. Peter, R. Philippe, G. Pilate, A. Poliakov, J. Razumovskaya, P. Richardson, C. Rinaldi, K. Ritland, P. Rouze, D. Ryaboy, J. Schmutz, J. Schrader, B. Segerman, H. Shin, A. Siddiqui, F. Sterky, A. Terry, C.-J. Tsai, E. Uberbacher, P. Unneberg, J. Vahala, K. Wall, S. Wessler, G. Yang, T. Yin, C. Douglas, M. Marra, G. Sandberg, Y. Van de Peer and D. Rokhsar. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313: 1596-1604. https://doi.org/10.1126/science.1128691
  80. The French-Italian Public Consortium for Grapevine Genome Characterization. 2007. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326. https://doi.org/10.1371/journal.pone.0001326
  81. Williams, J. H. and W. E. Friedman. 2002. Identification of diploid endosperm in an early angiosperm lineage. Nature 415: 522-526. https://doi.org/10.1038/415522a
  82. Zanis, M. J., D. E. Soltis, P. E. Soltis, S. Mathews and M. J. Donoghue. 2002. The root of the angiosperms revisited. Proc. Natl. Acad. Sci. U.S.A. 99: 6848-6853. https://doi.org/10.1073/pnas.092136399