Synthesis of Biodiesel from Soybean Oil Using Lewis Acidic Ionic Liquids Containing Metal Chloride Salts

금속염화물을 첨가한 루이스산 이온성 액체 촉매를 이용한 대두유로부터 바이오디젤 합성

  • Choi, Jae Hyung (Department of Chemical Engineering, Pukyong National University) ;
  • Park, Yong Beom (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Suk Hee (Department of Chemical Engineering, Pukyong National University) ;
  • Cheon, Jae Kee (Department of Chemical Engineering, Pukyong National University) ;
  • Choi, Jae Wook (Department of Safety Engineering, Pukyong National University) ;
  • Woo, Hee Chul (Department of Chemical Engineering, Pukyong National University)
  • 최재형 (부경대학교 화학공학과) ;
  • 박용범 (부경대학교 화학공학과) ;
  • 이석희 (부경대학교 화학공학과) ;
  • 천재기 (부경대학교 화학공학과) ;
  • 최재욱 (부경대학교 안전공학부) ;
  • 우희철 (부경대학교 화학공학과)
  • Received : 2010.05.26
  • Accepted : 2010.06.22
  • Published : 2010.10.31

Abstract

Production of biodiesel from soybean oil catalyzed by Lewis acidic ionic liquids(ILs) containing metal chloride salts was investigated in this study. Metal chloride salts, such as $SnCl_2$, $ZnCl_2$, $AlCl_3$, $FeCl_3$ and CuCl, were screened for oil transesterification in the range of 363-423 K. Among these metal chlorides, tin chloride showed particularly high catalytic property for the oil transesterification. Similarly, among these Lewis acidic ionic liquid catalysts, $[Me_3NC_2H_4OH]Cl-2SnCl_2$ resulted in a high fatty acid methyl esters(FAMEs) content of 91.1% under the following reaction conditions: 403 K, 14 h, and a molar ratio of 1:12:0.9 (oil:methanol:catalyst). Unlike the pure tin chloride catalysts, Lewis acidic ILs containing tin chloride $[Me_3NC_2H_4OH]Cl-2SnCl_2$ catalyst could be recycled up to five times without any significant loss of activity by separating from the FAMEs with simple decantation. The Lewis acidity and high moisture-stability of this catalyst appeared to be responsible for the excellent catalytic performance. The effects of reaction time and the molar ratio of methanol/catalyst to oil on the FAMEs production were also studied in this work.

본 연구에서는 이온성 액체인 염화콜린에 5가지의 금속염화물을 첨가하여 루이스산 이온성 액체 촉매를 제조하고, 이 촉매를 사용하여 대두유로부터 바이오디젤을 합성하였다. 먼저 단독의 금속염화물인 염화주석과 염화아연, 염화알루미늄, 염화철(III), 염화구리(I) 촉매에 대하여 363~423 K 온도 범위에서 에스터 교환 반응의 반응성을 조사하였다. 5가지의 금속염화물 중 염화주석이 우수한 촉매 활성을 나타내었고, 이러한 경향과 같이 5가지의 루이스산 이온성 액체 촉매 중 $[Me_3NC_2H_4OH]Cl-2SnCl_2$의 촉매가 403 K에서 14시간 동안 유지:메탄올:촉매의 몰 비율 1:12:0.9인 조건으로 최대 91.1%의 높은 반응수율을 나타내었다. 단독의 염화주석 촉매와는 달리, $[Me_3NC_2H_4OH]Cl-2SnCl_2$의 촉매는 반응 후 액체-액체 이상계를 형성하여 반응물과 생성물로부터 쉽게 분리할 수 있으며, 5회 이상 재사용 후에도 활성이 거의 감소하지 않았다. 이러한 결과는 촉매의 수분에 대해 안정성과 강한 루이스 산성도의 특성에 기인한 것으로 생각된다. 또한 촉매에 대한 반응시간과 촉매 및 메탄올 몰 비율 등의 반응변수들에 대한 영향이 조사되었다.

Keywords

References

  1. Park, J. I., Woo, H. C. and Lee, J. H., "Production of Bio-energy from Marine Algae: Status and Perspectives," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 46(5), 833-844(2008).
  2. Ma, F. and Hanna, M. A., "Biodiesel Production: a Review," Bioresource Tech., 70, 1-15(1999). https://doi.org/10.1016/S0960-8524(99)00025-5
  3. Madras, G., Kolluru, C. and Kumar, R., "Synthesis of Biodiesel in Supercritical Fluids," Fuel, 83, 2029-2033(2004). https://doi.org/10.1016/j.fuel.2004.03.014
  4. Varma, M. N. and Madras, G., "Synthesis of Biodiesel from Castor Oil and Linseed Oil in Supercritical Fluids," Ind. Eng. Chem. Res., 46, 1-6(2007). https://doi.org/10.1021/ie0607043
  5. Marchetti, J. M., Miguel, V. U. and Errazu, A. F., "Possible Methods for Biodiesel Production," Renew. Sustain. Energ. Rev., 11, 1300-1311(2007). https://doi.org/10.1016/j.rser.2005.08.006
  6. Jordan, V. and Gutsche, B., "Development of an Environmentally Benign Process for the Production of Fatty Acid Methyl Esters," Chemosphere, 43, 99-105(2001). https://doi.org/10.1016/S0045-6535(00)00329-5
  7. Lee, H. J., Lee, J. S., Ahn, B. S. and Kim, H. S., "Technology Trend in Ionic Liquids," J. Korean Ind. Eng. Chem., 16, 595-602(2005).
  8. Sheldon, R., "Catalytic Reactions in Ionic Liquids," Chem. Commun., 2399-2407(2001).
  9. Gordon, C. M., "New Developments in Catalysis using Ionic Liquids," Appl. Catal. A Gen., 222, 101-117(2001). https://doi.org/10.1016/S0926-860X(01)00834-1
  10. Shim, H. L., Lee, M. K., Yu, J. I. and Park, D. W., "Cycloaddition of Carbon Dioxide to Allyl Glycidyl Ether using Silica-supported Ionic Liquid as a Catalyst," Clean Tech., 14, 166-170(2008).
  11. Hubert, V. M., Emmanuelle, S., Paulo, D. C. C. and Friedrich, H. W., "Immobilized Ionic Liquids," EP Patent No. 1, 230, 023(2001).
  12. Sunitha, S., Kanjilal, S., Reddy, P. S. and Prasad, R. B. N., "Liquid- liquid Biphasic Synthesis of Long Chain Wax Esters using the Lewis Acidic Ionic Liquid Choline Chloride $2ZnCl_2$," Tetrahedron Letters, 48, 6962-6965(2007). https://doi.org/10.1016/j.tetlet.2007.07.159
  13. Yang, Y. and Kou, Y., "Determination of the Lewis Acidity of Ionic Liquids by means of an IR Spectroscopic Probe," Chem. Commun., 2, 226-227(2004).
  14. KS M 2413, "Fat and Oil Derivatives-Fatty Acid Methyl Esters (FAME)-Determination of Ester and Linolenic Acid Methyl Ester Contents," KATS(2004).
  15. Abreu, F. R., Lima, D. G., Hamu, E. H. and Wolf, C., "Utilization of Metal Complexes as Catalysts in the Transesterification of Brazillian Vegetable Oils with Different Alcohols," J. Mol. Catal. A: Chem., 209(1-2), 29-33(2004). https://doi.org/10.1016/j.molcata.2003.08.003
  16. Bhattachary, A. K., Hartridge, A., Mallick, K. K., Werrett, C. R. and Woodhead, J. L., "Low-temperature decomposition of hydrated Transition Metal Chlorides on Hydrous Gel Substrates," J. Mater. sci., 31, 4479-4482(1996). https://doi.org/10.1007/BF00366343
  17. Abbott, A. P., Capper, G., Davies, D. L. and Rasheed, R., "Ionic Liquids Based upon Metal Halide/Substituted Quaternary Ammonium Salt Mixture," Inorg. Chem., 43, 3447-3452(2004). https://doi.org/10.1021/ic049931s
  18. Abbott, A. P., Capper, G., Davies, D. L., Munro, H. L., Rasheed, R. K. and Tambyrajah, V., "Preparation of Novel, Moisture-Stable Lewis-Acidic Ionic Liquids Containing Quaternary Ammonium Salts with Functional Side Chains," Chem. Commun., 19, 2010-2011(2001).
  19. King, D., Mantz, R. and Osteryoung, R., "Acidity of HCl in Neutral Buffered Chloroaluminate Molten Salts," J. Am. Chem. Soc., 118, 11933-11938(1996). https://doi.org/10.1021/ja961935b
  20. Hong, Y. K. and Hong, W. H., "Biodiesel Production Technology and Its Fuel Properties," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 45(5), 424-432 (2007).