금속 불화물 첨가제가 α-알루미나 입자생성에 미치는 영향

Effect of Metal Fluoride on the Formation of α-Alumina Particles

  • 서금석 ((주)제이피에스 마이크로텍) ;
  • 이상근 ((주)제이피에스 마이크로텍) ;
  • 안병현 (부경대학교 신소재공학부) ;
  • 주창식 (부경대학교 화학공학과) ;
  • 홍성수 (부경대학교 화학공학과) ;
  • 박성수 (부경대학교 공업화학과) ;
  • 이근대 (부경대학교 공업화학과)
  • 투고 : 2010.04.18
  • 심사 : 2010.05.04
  • 발행 : 2010.10.31

초록

질산 알루미늄과 암모니아 용액을 출발물질로 하고 또한 금속 불화물을 첨가제로 사용하여 $\alpha$-알루미나 입자를 침전법으로 제조하였다. 이 때 제조과정에서 사용된 용매의 영향과 $AlF_3$, $CaF_2$, $MnF_2$ 등의 3 가지 금속 불화물 첨가제가 $\alpha$-알루미나로의 상전이 온도, 입자 크기 및 형태 등에 미치는 영향에 대해 조사하였다. $\alpha$-알루미나 제조시 사용된 용매는 상전이 온도에는 큰 영향을 미치지 않는 반면 입자 크기에 영향을 미쳤다. 첨가제 조성에 따라 $\alpha$-알루미나 상전이 온도가 차이가 났으나($AlF_3(800^{\circ}C)$ < $MnF_2(900^{\circ}C)$ < $CaF_2(950^{\circ}C)$), 첨가제를 사용하지 않은 경우($1,100^{\circ}C$)보다는 모두 상전이 온도가 낮음을 알 수 있었다. 3 가지 첨가제를 사용한 경우 모두 판상의 $\alpha$-알루미나 입자들이 얻어졌으나, 그 중 $MnF_2$를 첨가한 경우에 가장 작은 크기의 $\alpha$-알루미나 입자들이 생성되었다.

$\alpha$-Alumna particles were prepared by a precipitation method with metal fluoride additive. Aluminum nitrate and ammonia solution were used as starting materials. $AlF_3$, $CaF_2$, and $MnF_2$ were utilized as additives. The effects of precipitation solvent and metal fluoride on the phase transformation temperature, size and morphology of $\alpha$-alumna particles were investigated. The solvent for precipitation did not affect the phase transformation temperature, while it influenced the size of $\alpha$-alumna particles. The phase transformation temperature to $\alpha$-alumna was reduced by addition of metal fluoride and was different with metal cation in metal fluoride ($AlF_3(800^{\circ}C)$ < $MnF_2(900^{\circ}C)$ < $CaF_2(950^{\circ}C)$). The addition of each of three metal fluorides led to the formation of platelike particles and, among the three additives, $MnF_2$ additive resulted in the formation of relatively small particle.

키워드

참고문헌

  1. Hill, R. F., Danzer, R. and Paine, R. T., "Synthesis of Aluminum Oxide Platelets," J. Am. Ceram. Soc., 84, 514-520(2001). https://doi.org/10.1111/j.1151-2916.2001.tb00692.x
  2. Lu, H., Sun, H., Mao, A., Yang, H., Wang, H. and Hu, X., "Preparation of Plate-like Nano $\alpha-Al_2O_3 $ using Nano-aluminum Seeds by Wet-chemical Methods," J. Mater. Sci. Eng., A, 406, 19-23(2005). https://doi.org/10.1016/j.msea.2005.04.047
  3. Niihara, K., "New Design Concept of Structural Ceramics, Ceramic Nanocomposites," J. Ceram. Soc., Jpn. 99, 974-982(1991). https://doi.org/10.2109/jcersj.99.974
  4. Lu, H. X., Sun, H. W., Li, G. X., Chen, C. P., Yang, D. L. and Lu, X., "Preparation of Platelike Nano Alpha Alumina Particles," Ceram. Int., 31, 105-108(2005). https://doi.org/10.1016/j.ceramint.2004.03.040
  5. Wu, Y., Zhang, Y., Huang, X. and Guo, J., "Preparation of Platelike Nano Alpha Alumina Particles," Ceram. Int., 27, 265-268(2001). https://doi.org/10.1016/S0272-8842(00)00074-2
  6. Wu, Y., Zhang, Y., Pezzotti, G. and Guo, J., "Influence of $AlF_3\;and\;ZnF_2 $ on the Phase Transformation of Gamma to Alpha Alumina," Mater. Lett., 52, 366-369(2002). https://doi.org/10.1016/S0167-577X(01)00423-2
  7. Fu, G., Wang, J. and Kang, J., "Influence of AlF3 and Hydrothermal Conditions on the Morphologies of $\alpha-Al_2O_3$," Trans. Nonferrous Met. Soc. China, 18, 743-748(2008). https://doi.org/10.1016/S1003-6326(08)60128-4
  8. Zivkovic, Z., Strbac, N. and Sestak, J., "Influence of Fluorides on Polymorphous Transformation of $\alpha-Al_2O_3$ Formation," Thermochim. Acta, 266, 293-300(1995). https://doi.org/10.1016/0040-6031(95)02335-6
  9. Li, J., Wu, Y., Pan, Y., Liu, W. and Guo, J., "Influence of Fluorides on the Phase Transition of $\alpha-Al_2O_3$ Formation," Ceram. Int., 33, 919-923(2007). https://doi.org/10.1016/j.ceramint.2006.02.002
  10. Okada, K., Hattori, A., Taniguchi, T., Nukui, A. and Das, R. N., "Effect of Divalent Cation Additives on the $\gamma-Al_2O_3\;to\;\alpha-Al_2O_3$ Phase Transition," J. Am. Ceram. Soc., 83, 928-932(2000).
  11. Odaka, A., Yamaguchi, T., Fujita, T., Taruta, S. and Kitajima, K., "Cation Dopant Effect on Phase Transformation and Microstructural Evolution in $M^{2+}-substituted\;\gamma-Alumina$ Powders," J. Mater. Sci., 43, 2713-2720(2008). https://doi.org/10.1007/s10853-008-2485-5
  12. Wang, S., Zhai, Y., Li, X., Li, Y. and Wang, K., "Coprecipitation Synthesis of MgO-doped $ZrO_2$ Nano Powder," J. Am. Ceram. Soc., 89, 3577-3581(2006). https://doi.org/10.1111/j.1551-2916.2006.01244.x
  13. Bell, N. S., Cho, S.-B. and Adair, J. H., "Size Control of $\alpha$- Alumna Particles Synthesized in 1,4-Butanediol Solution by $\alpha$- Alumna and $\alpha$-Hematite Seeding," J. Am. Ceram. Soc., 81, 1411-1420(1998).
  14. Wang, S., Li, X., Wang, S., Li, Y. and Zhai, Y., "Synthesis of $\gamma$-Alumina via Precipitation in Ethanol," Mater. Lett., 62, 3552-3554(2008). https://doi.org/10.1016/j.matlet.2008.03.048
  15. Kaliszew, M. S. and Heuer, A. H., "Alcohol Interaction with Zirconia Powders," J. Am. Ceram. Soc., 73, 1504-1509(1990). https://doi.org/10.1111/j.1151-2916.1990.tb09787.x
  16. Kim, H. J., Kim, T. G., Kim, J. J., Park, S. S., Hong, S. S. and Lee, G. D., "Influences of Precursor and Additive on the Morphology of Nanocrystalline $\alpha$-Alumna," J. Phys. Chem. Solid, 69, 1521-1524(2008). https://doi.org/10.1016/j.jpcs.2007.10.024