DOI QR코드

DOI QR Code

Al-B-C 조제 β-SiC의 스파크 플라즈마 소결에 미치는 α-SiC seed 첨가 영향: 미세 구조 변화

Influence of α-SiC Seed Addition on Spark Plasma Sintering of β-SiC with Al-B-C: Microstructural Development

  • 조경식 (금오공과대학교 신소재시스템공학부) ;
  • 이현권 (금오공과대학교 신소재시스템공학부) ;
  • 이상우 (금오공과대학교 신소재시스템공학부)
  • Cho, Kyeong-Sik (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Lee, Hyun-Kwuon (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Lee, Sang-Woo (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology)
  • 발행 : 2010.02.28

초록

The unique features of spark plasma sintering process are the possibilities of a very fast heating rate and a short holding time to obtain fully dense materials. $\beta$-SiC powder with 0, 2, 6, 10 wt% of $\alpha$-SiC particles (seeds) and 4 wt% of Al-B-C (sintering aids) were spark plasma sintered at $1700-1850^{\circ}C$ for 10 min. The heating rate, applied pressure and sintering atmosphere were kept at $100^{\circ}C/min$, 40 MPa and a flowing Ar gas (500 CC/min). Microstructural development of SiC as function of seed content and temperature during spark plasma sintering was investigated quantitatively and statistically using image analysis. Quantitative image analyses on the sintered SiC ceramics were conducted on the grain size, aspect ratio and grain size distribution of SiC. The microstructure of SiC sintered up to $1700^{\circ}C$ consisted of equiaxed grains. In contrast, the growth of large elongated SiC grains in small matrix grains was shown in sintered bodies at $1750^{\circ}C$ and the plate-like grains interlocking microstructure had been developed by increasing sintering temperature. The introduction of $\alpha$-SiC seeds into $\beta$-SiC accelerated the grain growth of elongated grains during sintering, resulting in the plate-like grains interlocking microstructure. In the $\alpha$-SiC seeds added in $\beta$-SiC, the rate of grain growth decreased with $\alpha$-SiC seed content, however, bulk density and aspect ratio of grains in sintered body increased.

키워드

참고문헌

  1. L. J. Schioler: Am. Ceram. Soc. Bull., 64 (1986) 268.
  2. K. Yamada and M. Mohri: Silicon-Carbide Ceramics, S. Somiya and Y. Inomata (Ed.), Uchida Rokakuho Publishing Ltd., (1988) 9.
  3. M. Srinivasam: Structural Ceramics, J. B. Wachtmann. Jr (Ed.), Academic Press, (1989).
  4. W. L. Vaushn and H. G. Maahs: J. Am. Ceram. Soc., 73 (1990) 1540. https://doi.org/10.1111/j.1151-2916.1990.tb09793.x
  5. S. Prochazka: Ceramics for High Performance Applications, Burke, Gorum and Katz (Ed.), Brook Hill (1974) 239.
  6. W. Bocker and H. Hausner: Powder Metal. Inter., 10 (1976) 87.
  7. D. H. Stutz, S. Prochazka and J. Lorenz: J. Am. Ceram. Soc., 68 (1985) 479. https://doi.org/10.1111/j.1151-2916.1985.tb15812.x
  8. A. H. Heuer, G. A. Fryburg, L. U. Ogbuji and T. E. Mitchell: J. Am. Ceram. Soc., 61 (1978) 406. https://doi.org/10.1111/j.1151-2916.1978.tb09348.x
  9. L. U. Ogbuji, T. E. Mitchell and A. H. Heuer: J. Am. Ceram. Soc., 64 (1981) 91. https://doi.org/10.1111/j.1151-2916.1981.tb09583.x
  10. M. Omori and H. Takei: J. Am. Ceram. Soc., 65 (1982) C92. https://doi.org/10.1111/j.1151-2916.1982.tb10460.x
  11. M. A. Mulla and V. D. Kristic: Acta Metall. Mater., 42 (1994) 303. https://doi.org/10.1016/0956-7151(94)90072-8
  12. M. A. Mulla and V. D. Kristic: Am. Ceram. Soc. Bull., 70 (1991) 439.
  13. N. P. Padture: J. Am. Ceram. Soc., 77 (1994) 519. https://doi.org/10.1111/j.1151-2916.1994.tb07024.x
  14. S. H. Kim, Y.-W. Kim and M. Mitomo: J. Mater. Sci., 38 (2003) 1117. https://doi.org/10.1023/A:1022812427677
  15. N. P. Padture and B. R. Lawn: J. Am. Ceram. Soc., 77 (1994) 2518. https://doi.org/10.1111/j.1151-2916.1994.tb04637.x
  16. Y. W. Kim, K. S. Cho and J. G. Lee: Kor. J. Ceram., 2 (1996) 39.
  17. Y. W. Kim, M. Mitomo and H. Hirotsuru: J. Am. Ceram. Soc., 80 (1997) 99. https://doi.org/10.1111/j.1151-2916.1997.tb02796.x
  18. R. M. Williams, B. N. Juterbock, S. S. Shinozaki, C. R. Peters and T.J. Whalen: Am. Ceram. Soc. Bull., 64 (1985) 1385.
  19. B.-W. Lin, M. Imai, T. Yano and T. Iseki: J. Am. Ceram. Soc., 69 (1986) C67.
  20. S. Shinozaki, R. M. Williams, B. N. Juterbock, W. T. Donlon, J. Hangas and C. R. Peters: J. Am. Ceram. Soc., 64 (1985) 1389.
  21. J. J. Cao, W. J. Moherlychan, L. C. De Jonghe, C. J. Gilbert and R. O. Ritchie: J. Am. Ceram. Soc., 79 (1996) 461. https://doi.org/10.1111/j.1151-2916.1996.tb08145.x
  22. W. J. Moberlychan, J. J. Cao and L. C. De Jonghe: Acta Mater., 46 (1998) 1625. https://doi.org/10.1016/S1359-6454(97)00343-1
  23. W. J. Moberlychan and L. C. De Jonghe: Acta Mater., 46 (1998) 2471. https://doi.org/10.1016/S1359-6454(98)80030-X
  24. D. Chen, M. E. Sixta, X. F. Zhang, L. C. De Jonghe and R. O. Ritchie: Acta Mater., 48 (2000) 4599. https://doi.org/10.1016/S1359-6454(00)00246-9
  25. X. F. Zhang, Q. Yang and L. C. De Jonghe: Acta Mater., 51 (2003) 3849. https://doi.org/10.1016/S1359-6454(03)00209-X
  26. X. F. Zhang, G. Y. Lee, D. Chen, R. O. Ritchie and L. C. De Jonghe: J. Am. Ceram. Soc., 86 (2003) 1370. https://doi.org/10.1111/j.1151-2916.2003.tb03478.x
  27. M. Tokita: J. Soc. Powder Technol. Jpn., 30 (1993) 790. https://doi.org/10.4164/sptj.30.11_790
  28. N. Tamari, T. Tanaka, K. Tanaka, I. Kondoh, M. Kawahara and M. Tokita: J. Ceram. Soc. Jpn., 103 (1995) 740. https://doi.org/10.2109/jcersj.103.740
  29. T. Nishimura, M. Mitomo, H. Hirotsuru and M. Kawakara: J. Mater. Sci. Lett., 14 (1995) 1046. https://doi.org/10.1007/BF00258160
  30. D. S. Perera, M. Tokita and S. Moricca: J. Euro. Ceram. Soc., 18 (1998) 401. https://doi.org/10.1016/S0955-2219(97)00139-8
  31. Y. Zhou, K. Hirao, M. Toriyama and H. Tanaka: J. Mater. Res., 14 (1999) 3363. https://doi.org/10.1557/JMR.1999.0455
  32. S. W. Wang, L. D. Chen and T. Hirai: J. Mater. Res., 15 (2000) 982. https://doi.org/10.1557/JMR.2000.0140
  33. Y. Zhou, K. Hirao, M. Toriyama and H. Tanaka: J. Am. Ceram. Soc., 83 (2000) 654.
  34. K.-S. Cho, S. Kim, H.-J. Choi, J.-G. Lee and Y.-W. Kim: J. Kor. Ceram. Soc., 38 (2001) 687.
  35. L. Gao, H. Wang, H. Kawaoka, T. Sekino and K. Niihara: J. Euro. Ceram. Soc., 22 (2002) 785. https://doi.org/10.1016/S0955-2219(01)00368-5
  36. K.-S. Cho, K.-S. Lee, J.-H. Song, J.-Y. Kim and K.-H. Song: J. Kor. Ceram. Soc., 40 (2003) 751. https://doi.org/10.4191/KCERS.2003.40.8.751
  37. W. Chen, U. Anselmi-Tamburini, J. E. Garay, J. R. Graza and Z. A. Munir: Mater. Sci. & Engineer., A394 (2005) 132.
  38. U. Anselmi-Tamburini, S. Gennari and Z. A. Munir: Mater. Sci. & Eng., A394 (2005) 139.
  39. K.-S. Cho and K.-S. Lee: Key Eng. Mater., 287 (2005) 335. https://doi.org/10.4028/www.scientific.net/KEM.287.335
  40. K.-S. Cho, K.-S. Lee, H.-K. Lee, S. J. Lee and H.-J. Choi: J. Kor. Ceram. Soc., 42 (2005) 567. https://doi.org/10.4191/KCERS.2005.42.8.567
  41. K.-S. Cho, Z. A. Munir and H.-K. Lee: J. Ceram. Pro. Res., 9 (2008) 500.
  42. Y.-W. Kim, M. Mitomo and G.-D. Zhan: J. Mater. Res., 14 (1999) 4291. https://doi.org/10.1557/JMR.1999.0581
  43. K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, O. Van der Biest: Acta Mater., 53 (2005) 4379. https://doi.org/10.1016/j.actamat.2005.05.042
  44. Y.-W. Kim, S.-G. Lee and M. Mitomo: J. Euro. Ceram. Soc., 22 (2002) 1031. https://doi.org/10.1016/S0955-2219(01)00408-3