DOI QR코드

DOI QR Code

Convergent 열처리를 통한Nd23Dy10Fe64TM2B1 소결자석의 보자력 향상

Coercivity Enhancement of Nd23Dy10Fe64TM2B1 Sintered Magnet by Convergent Heat Treatment

  • 김훈섭 (한양대학교 신소재공학과) ;
  • 김세훈 (한양대학교 신소재공학과) ;
  • 김진우 (한양대학교 신소재공학과) ;
  • 김영도 (한양대학교 신소재공학과)
  • Kim, Hoon-Sup (Department of Materials Science and Engineering, Hanyang University) ;
  • Kim, Se-Hoon (Department of Materials Science and Engineering, Hanyang University) ;
  • Kim, Jin-Woo (Department of Materials Science and Engineering, Hanyang University) ;
  • Kim, Young-Do (Department of Materials Science and Engineering, Hanyang University)
  • 발행 : 2010.02.28

초록

In this study, a convergent heat treatment was performed in certain temperature regions in order to control the microstructures of Nd-rich phases and to reduce thermal stress on grain boundaries which could be caused during expansion and shrinkage of Nd-rich and $Nd_2Fe_{14}B$ phases. The difference of thermal expansion coefficient between $Nd_2Fe_{14}B$ and Nd-rich phases is the mechanism for convergent heat treatment. The Nd-rich phases which were located in junctions could penetrate into the grain boundaries between $Nd_2Fe_{14}B$ phases due to the difference of thermal expansion coefficient. Through the convergent heat treatment, the microcracks that were observed in cyclic heat treatment were not observed and coercivity was increased to 34.05 kOe at 8 cycles.

키워드

참고문헌

  1. M. Sagawa, S. Fujimura, N. Tpgawa and Y. Matsuura: J. Appl. Phys., 55 (1984) 2083. https://doi.org/10.1063/1.333572
  2. D. Brown, B.-M. Ma and Z. Chen: J. Magn. Magn. Mater., 248 (2002) 432. https://doi.org/10.1016/S0304-8853(02)00334-7
  3. D. Lemarchand, P. Vigier and B. Labulle: IEEE Trans. Magn., 26 (1990) 2649. https://doi.org/10.1109/20.104826
  4. H. Kromuller, K. D. Durst and G. Martinek: J. Magn. Magn. Mater., 69 (198) 149. https://doi.org/10.1016/0304-8853(87)90111-9
  5. Y. Tsubokawa, R. Shimizu, S. Hirosawa and M. Sagawa: J. Appl. Phys., 63 (1988) 3319. https://doi.org/10.1063/1.340823
  6. R. K. Mishira, J. K. Chen and G. Thomas: J. Appl. Phys., 59 (1986) 2244 https://doi.org/10.1063/1.336366
  7. F. Vial, F. Joly, E. Nevalanien, M. Sagawa, K. Hiraga and K. T. Park: J. Magn. Magn. Mater., 242 (2002) 1329. https://doi.org/10.1016/S0304-8853(01)00967-2
  8. R. Ramensh, G. Thomas and B. M. Ma: J. Appl. Phys., 70 (1991) 6453. https://doi.org/10.1063/1.349928
  9. S. J. Chu: Ultra-strong permanent magnet materials, Ulsan Univ. Pub., Ulsan (1999); 주수증: 초강력 영구 자성체, 울산대학교 출판부, (1999)
  10. S. H. Kim, H.-S. Kim, D. H. Kim and Y. D. Kim: J. Korean Powder Metall. Inst., 15 (2008) 471 (Korean). https://doi.org/10.4150/KPMI.2008.15.6.471
  11. D. H. Kim: Study on the development of high performance Nd-rare earth permanent magnets by enhanced anisotropy, Ministry of Knowledge Economy, (2007); 김동환: 완전이방화에 의한 초고특성 Nd계희토류영구자석 개발에 관한 연구, 지식경제부, (2007).
  12. W. F. Li, T. Ohkubo and K. Hono: Acta Mater., 57 (2009) 1337-1346. https://doi.org/10.1016/j.actamat.2008.11.019