Formation Mechanism of Mesoporous Aluminum Hydroxide Film by Alkali Surface Modification

알칼리 표면개질을 통한 메조포러스 알루미늄 하이드록사이드 필름 형성 기구

  • Seo, Young-Ik (Division of Materials Science and Engineering, Hanyang University) ;
  • Jeon, Yong-Jin (Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Young-Jung (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Dae-Gun (Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Kyu-Hwan (Computational Science Center, Korea Institute of Science and Technology) ;
  • Kim, Young-Do (Division of Materials Science and Engineering, Hanyang University)
  • 서영익 (한양대학교 신소재공학부) ;
  • 전용진 (한양대학교 신소재공학부) ;
  • 이영중 (한양대학교 신소재공학부) ;
  • 김대건 (한양대학교 신소재공학부) ;
  • 이규환 (한국과학기술연구원) ;
  • 김영도 (한양대학교 신소재공학부)
  • Published : 2010.02.27


In this study, a new, relatively simple fabrication method for forming a mesoporous $Al(OH)_3$ film on Al substrates was demonstrated. This method, i.e., alkali surface modification, was simply comprised of dipping the substrate in a $5\times10^{-3}$ M NaOH solution at $80^{\circ}C$ for one minute and then immersing it in boiling water for 30 minutes. After alkali surface modification, a mesoporous $Al(OH)_3$ film was formed on the Al substrate, and its chemical state and crystal structure were confirmed by XPS and TEM. According to the results of the XPS analysis, the flake-like morphology after the alkali surface modification was mainly composed of $Al(OH)_3$, with a small amount of $Al_2O_3$. The mesoporous $Al(OH)_3$ layer was composed of three regions: an amorphousrich region, a region of mixed amorphous and crystal domains, and a crystalline-rich region near the $Al(OH)_3$ layer surface. It was confirmed that the stabilization process in the alkali surface modification strongly influenced the crystallization of the mesoporous $Al(OH)_3$ layer.



  1. J. Chen, S. Truesdail, F. Lu, G. Zhang, C. Belvin, B.Koopman, S. Farrah and D. Shah, Water Res., 32(7),2171(1998).
  2. S. Goldberg, J. A. Davis, and J. D. Hem, The EnvironmentalChemistry of Aluminum, 2nd ed., p. 271, LewisPublishers, New York, U.S.A., (1996).
  3. H. Liu, J. S. Tse, J. Hu, Z. Liu, L. Wang, J. Chen, D. J.Weidner, Y. Meng, D. Hausemann and H. -K. Mao, J.Phys. Chem. B 109(18), 8857 (2005).
  4. R. Demichelis, Y. Noel, B. Civalleri, C. Roetti, M. Ferrero and R. Dovesi, J. Phys. Chem. B 111(31), 9337 (2007).
  5. J. -F. Chen, L. Shao, F. Guo and X. -M. Wang, Chem.Eng. Sci. 58(3-6), 569 (2003).
  6. K. J. Bayer, Patent DE-PS 43977 (1887).
  7. J. Bhom, Z. Anorg. Allg. Chem. 149, 203 (1925).
  8. C. Dewey, Am. J. Sci. 2, 249 (1820).
  9. R. A. V. Nordstrand, W. P. Hettinger and C. D. Keith, Nature 177(4511), 713 (1956).
  10. G. Y. Chao, J. Baker, A. P. Sabina and A. C. Roberts, Can.Miner. 23, 21 (1985).
  11. R. Demichelis, B. Civalleri, Y. Noel, A. Meyer and R.Dovesi, Chem, Phys. Lett. 465(4-6), 220 (2008).
  12. Y. Cesteros, P. Salagre, F. Medina and J.E. Sueiras, Chem.Mater. 13(8), 2595 (2001).
  13. Y. H. Oh, C. K. Rhee, D. H. Kim, G. H. Lee and W. W.Kim, J. Mater. Sci. 41(13), 4191 (2006).
  14. Y. Lee, Y. Liu and C. -S. Yeh, Phys. Chem. Chem. Phys.1(19), 4681 (1999).
  15. Y. I. Seo, D. -G. Kim, Y. D. Kim, B. J. Lee and K. H. Lee, Scripta Mater. 59(8), 889 (2008).
  16. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D.Bomben, Handbook of X-ray Photoelectron Spectroscopy, p. 213, Physical Electronics, Inc., Eden Prarie, MN,U.S.A., (1995).
  17. K. Wefer sand C.Misra, Oxides and hydroxides of aluminum, Technical Paper No. 19, Aluminum Company of America, Pittsburgh, PA, (1987)
  18. J. S. C. Loh, A. M. Fogg, H. R. Watling, G. M. Parkinson and D. O'Hare, Phys. Chem. Chem. Phys. 2(16), 3597 (2000).
  19. G. C. Bye and J. Robbinson, Kolloid Z. Z. Polymere 198, 53 (1964).
  20. H. Ginsberg, W. Huttig and H. Stiehl, Z. Anorg. Alg. Chem. 318, 238 (1962).

Cited by

  1. Application of brass scrubber filter with copper hydroxide nanocomposite structure for phosphate removal vol.20, pp.2, 2015,