DOI QR코드

DOI QR Code

CHARACTERIZATION OF THE GROUPS Dp+1(2) AND Dp+1(3) USING ORDER COMPONENTS

  • Darafsheh, Mohammad Reza (School of Mathematics, College of Science, University of Tehran, Research Institute for Fundamental Science)
  • Published : 2010.03.01

Abstract

In this paper we will prove that the groups $D_{p+1}$(2) and $D_{p+1}$(3), where p is an odd prime number, are uniquely determined by their sets of order components. A main consequence of our result is the validity of Thompson's conjecture for the groups $D_{p+1}$(2) and $D_{p+1}$(3).

Keywords

References

  1. S. H. Alavi and A. Daneshkhah, A new characterization of alternating and symmetric groups, J. Appl. Math. Comput. 17 (2005), no. 1-2, 245–258. https://doi.org/10.1007/BF02936052
  2. G. Y. Chen, A new characterization of sporadic simple groups, Algebra Colloq. 3 (1996), no. 1, 49–58.
  3. G. Y. Chen, A new characterization of $PSL_2(q)$, Southeast Asian Bull. Math. 22 (1998), no. 3, 257–263.
  4. G. Y. Chen, On Thompson's conjecture, J. Algebra 185 (1996), no. 1, 184–193. https://doi.org/10.1006/jabr.1996.0320
  5. G. Y. Chen, On structure of Frobenius and 2-Frobenius group, J. Southwest China Normal Univ. 20 (1995), no. 5, 485–487.
  6. G. Y. Chen and H. Shi, $^2D_n(3)(9{\leq}n = 2^m + 1\;not\;a\;prime)$ can be characterized by its order components, J. Appl. Math. Comput. 19 (2005), no. 1-2, 353–362. https://doi.org/10.1007/BF02935810
  7. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Eynsham, 1985.
  8. P. Crescenzo, A Diophantine equation which arises in the theory of finite groups, Advances in Math. 17 (1975), no. 1, 25–29. https://doi.org/10.1016/0001-8708(75)90083-3
  9. M. R. Darafsheh, On non-isomorphic groups with the same set of order components, J. Korean Math. Soc. 45 (2008), no. 1, 137–150. https://doi.org/10.4134/JKMS.2008.45.1.137
  10. M. R. Darafsheh, Characterizability of the group $^3D_p(3)$ by its order components, where $p{\geq}5$ is a prime number not of the form $2^m$ + 1, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 7, 1117–1126. https://doi.org/10.1007/s10114-007-6143-7
  11. M. R. Darafsheh and A. Mahmiani, A quantitative characterization of the linear group $L_{p+1}(2)$ where p is a prime number, Kumamoto J. Math. 20 (2007), 33–50.
  12. M. R. Darafsheh and A. Mahmiani, A characterization of the group $^2D_n(2)\;where\;n = 2^m + 1{\geq}5$, J. Appl. Math. Comput. (DOI. 10.1007/s12190-008-0223-4).
  13. A. Iranmanesh, S. H. Alavi, and B. Khosravi, A characterization of PSL(3, q) where q is an odd prime power, J. Pure Appl. Algebra 170 (2002), no. 2-3, 243–254. https://doi.org/10.1016/S0022-4049(01)00113-X
  14. A. Iranmanesh, S. H. Alavi, and B. Khosravi, A characterization of PSL(3, q) for q = 2m, Acta Math. Sin. (Engl. Ser.) 18 (2002), no. 3, 463–472. https://doi.org/10.1007/s101140200164
  15. A. Iranmanesh, B. Khosravi, and S. H. Alavi, A characterization of $PSU_3(q)$ for q > 5, Southeast Asian Bull. Math. 26 (2002), no. 1, 33–44.
  16. C. Jansen, K. Lux, R. Parker, and R. Wilson, An Atlas of Brauer Characters, Oxford University Press, New York, 1995.
  17. A. Khosravi and B. Khosravi, A new characterization of PSL(p, q), Comm. Algebra 32 (2004), no. 6, 2325–2339. https://doi.org/10.1081/AGB-120037223
  18. A. Khosravi and B. Khosravi, A new characterization of some alternating and symmetric groups, Int. J. Math. Math. Sci. 2003 (2003), no. 45, 2863–2872. https://doi.org/10.1155/S0161171203202386
  19. Behrooz Khosravi, Behnam Khosravi, and Bahman Khosravi, The number of isomorphism classes of finite groups with the set of order components of $C_4(q)$, Appl. Algebra Engrg. Comm. Comput. 15 (2005), no. 5, 349–359. https://doi.org/10.1007/s00200-004-0166-4
  20. A. Khosravi and B. Khosravi, r-recognizability of $B_n(q)\;and\;C_n(q)\;where\;n = 2^m{\geq}4$, J. Pure Appl. Algebra 199 (2005), no. 1-3, 149–165. https://doi.org/10.1016/j.jpaa.2004.11.010
  21. A. S. Kondratev, On prime graph components of finite simple groups, Mat. Sb. 180 (1989), no. 6, 787–797, 864; translation in Math. USSR-Sb. 67 (1990), no. 1, 235–247.
  22. A. S. Kondratev and V. D. Mazurov, Recognition of alternating groups of prime degree from the orders of their elements, Sibirsk. Mat. Zh. 41 (2000), no. 2, 359–369, iii; translation in Siberian Math. J. 41 (2000), no. 2, 294–302.
  23. H. Shi and G. Y. Chen, $^2D_{p+1}(2)(5{\leq}p{\neq}2^m-1)$ can be characterized by its order components, Kumamoto J. Math. 18 (2005), 1–8.
  24. J. S. Williams, Prime graph components of finite groups, J. Algebra 69 (1981), no. 2, 487–513. https://doi.org/10.1016/0021-8693(81)90218-0
  25. K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), no. 1, 265–284. https://doi.org/10.1007/BF01692444

Cited by

  1. ON THE THOMPSON'S CONJECTURE ON CONJUGACY CLASSES SIZES vol.23, pp.01, 2013, https://doi.org/10.1142/S0218196712500774
  2. Characterization of G 2(q), where 2 < q ≡ −1(mod 3), by order components vol.54, pp.5, 2013, https://doi.org/10.1134/S0037446613050121