References
- Hermann, B. G.; Blok, K. M.; Patel, K. Environ. Sci. Technol. 2007, 41, 7915-7921. https://doi.org/10.1021/es062559q
- Tao, F.; Miao, J. Y.; Shi, G. Y.; Zhang, K. C. Process Biochemistry 2005, 40, 183-187. https://doi.org/10.1016/j.procbio.2003.11.054
- Righelato, D; Sprakcklen, D. V. Science 2007, 315, 902-904.
- Scharlemann, J. P. W.; Laurance, W. F. Science 2008, 319, 43-44. https://doi.org/10.1126/science.1153103
- PCT/KR2004/002939
- Korea patent 10-0512793, 2005.
- Kim, Y. J.; Varma, R. S. J. Org. Chem. 2005, 70, 7882-7891. https://doi.org/10.1021/jo050699x
- Stracke, M. P.; Migliorini, M. V.; Lissner, E. H.; Schrekker, S.; Dupont, J.; Goncalves, R. S. Applide Energy 2009, 86, 1512-1516. https://doi.org/10.1016/j.apenergy.2008.11.014
- Kim, H. S.; Kim, Y. J.; Lee, H.; Park, K. Y.; Lee, C.; Chin, C. S. Angew. Chem. Int. Ed. 2002, 41, 4300-4303. https://doi.org/10.1002/1521-3773(20021115)41:22<4300::AID-ANIE4300>3.0.CO;2-V
- Jol, C. N.; Neiss, T. G.; Penninkhof, B.; Rudolph, B.; De Ruiter, G. A. Anal. Biochem.1999, 268, 213-222. https://doi.org/10.1006/abio.1998.3059
- Quemener, B.; Lahaye, M. J. Appl. Phycology 1998, 10, 75-81. https://doi.org/10.1023/A:1008022129661
- Hama, Y.; Nakagawa, H.; Kurosawa, M.; Sumi, T.; Xia, X.; Yamaguchi, K. Anal. Biochem. 1998, 265, 42-48. https://doi.org/10.1006/abio.1998.2894
- Navarro, D. A.; Stortz, C. A. Carbohydrate Research 2003, 338, 2111-2118. https://doi.org/10.1016/S0008-6215(03)00345-8
- Sonu, N. G.; Kad, G. L.; Singh, J. Catal. Comm. 2007, 8, 1323-1328. https://doi.org/10.1016/j.catcom.2006.11.030
- Hajipour, A. R.; Khazdooz, L.; Ruoho, A. E. Catal. Comm. 2008, 9, 89-96. https://doi.org/10.1016/j.catcom.2007.05.003
- Yadav, L. D.; Srivastava, V. P.; Patel, R. Tetrahedron Lett. 2008, 49, 3142-3146. https://doi.org/10.1016/j.tetlet.2008.03.016
Cited by
- Correlation between Hydrogen Bond Basicity and Acetylene Solubility in Room Temperature Ionic Liquids vol.115, pp.5, 2011, https://doi.org/10.1021/jp108351f
- Ionic Liquids as Tools for the Acid-Catalyzed Hydrolysis/Dehydration of Saccharides to Furanic Aldehydes vol.3, pp.11, 2011, https://doi.org/10.1002/cctc.201100105
- Synthesis of 5-(Hydroxymethyl)furfural in Ionic Liquids: Paving the Way to Renewable Chemicals vol.4, pp.4, 2011, https://doi.org/10.1002/cssc.201000374
- Strategies for the production of high concentrations of bioethanol from seaweeds vol.4, pp.4, 2013, https://doi.org/10.4161/bioe.23396
- Enzymatic production of 3,6-anhydro-l-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities vol.97, pp.7, 2013, https://doi.org/10.1007/s00253-012-4184-z
- The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium vol.17, pp.5, 2014, https://doi.org/10.1111/1462-2920.12607
- Ethanol production from galactose by a newly isolated Saccharomyces cerevisiae KL17 vol.37, pp.9, 2014, https://doi.org/10.1007/s00449-014-1161-1
- Lignocellulosic and marine biomass as resource for production of polyhydroxyalkanoates vol.33, pp.5, 2016, https://doi.org/10.1007/s11814-016-0019-4
- Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars vol.101, pp.14, 2017, https://doi.org/10.1007/s00253-017-8383-5
- Bioethanol production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted to NaCl or galactose vol.40, pp.4, 2017, https://doi.org/10.1007/s00449-016-1718-2
- A Novel Agarolytic β-Galactosidase Acts on Agarooligosaccharides for Complete Hydrolysis of Agarose into Monomers vol.80, pp.19, 2014, https://doi.org/10.1128/AEM.01577-14
- Use of Microalgae for Advanced Wastewater Treatment and Sustainable Bioenergy Generation vol.33, pp.11, 2016, https://doi.org/10.1089/ees.2016.0132
- Anaerobic digestibility of algal bioethanol residue vol.113, pp.None, 2010, https://doi.org/10.1016/j.biortech.2011.12.123
- Ethanol Production from the Seaweed Gelidium amansii, Using Specific Sugar Acclimated Yeasts vol.24, pp.2, 2010, https://doi.org/10.4014/jmb.1307.07054
- Aqueous semisynthesis of C -glycoside glycamines from agarose vol.13, pp.None, 2010, https://doi.org/10.3762/bjoc.13.121
- Model-Based Complete Enzymatic Production of 3,6-Anhydro-L-galactose from Red Algal Biomass vol.66, pp.26, 2010, https://doi.org/10.1021/acs.jafc.8b01792
- Coimmobilization of β-Agarase and α-Neoagarobiose Hydrolase for Enhancing the Production of 3,6-Anhydro-L-galactose vol.66, pp.27, 2010, https://doi.org/10.1021/acs.jafc.8b01974
- Novel Two-Step Process Utilizing a Single Enzyme for the Production of High-Titer 3,6-Anhydro-L-galactose from Agarose Derived from Red Macroalgae vol.66, pp.46, 2018, https://doi.org/10.1021/acs.jafc.8b04144