DOI QR코드

DOI QR Code

Molecular Dynamics Simulation and Density Functional Theory Investigation for Thiacalix[4]biscrown and its Complexes with Alkali-Metal Cations

  • Hong, Joo-Yeon (Department of Chemistry, Sookmyung Women's University) ;
  • Lee, Che-Wook (Department of Chemistry, Sookmyung Women's University) ;
  • Ham, Si-Hyun (Department of Chemistry, Sookmyung Women's University)
  • Published : 2010.02.20

Abstract

The structural and energetic preferences of thiacalix[4]biscrown-5 with and without alkali metal ions ($Na^+$, $K^+$, $Rb^+$, and $Cs^+$) have been theoretically investigated for the first time using molecular dynamic (MD) simulations and density functional theory (MPWB1K/6-31G(d)//B3LYP/6-31G(d)) methods. The formation of the metal ion complex by the host is mainly driven by the electrostatic attraction between crown-5 oxygens and a cation together with the minor contribution of the cation-$\pi$ interaction between two facing phenyl rings around the cation. The computed binding energies and the atomic charge distribution analysis for the metal binding complexes indicate the selectivity toward a potassium ion. The theoretical results herein explain the experimentally observed extractability order by this host towards various alkali metal ions. The physical nature and the driving forces for cation recognition by this host are discussed in detail.

Keywords

References

  1. Gutsche, C. D. Calixarenes; Royal Society of Chemistry: Cambridge, 1989.
  2. Vicens, J.; Bohmer, V. Calixarenes: a Versatile Class of Macrocyclic Compounds; Springer: 1990.
  3. Akdas, H.; Bringel, L.; Graf, E.; Hosseini, M. W.; Mislin, G.; Pansanel, J.; Cian, A. D.; Fischer, J. Tetrahedron Lett. 1998, 39, 2311. https://doi.org/10.1016/S0040-4039(98)00067-7
  4. Iki, N.; Miyano, S. J. Inclu. Phenom. Macro. Chem. 2001, 41, 99. https://doi.org/10.1023/A:1014406709512
  5. Shokova, E. A.; Kovalev, V. V. Russ. J. Chem. Bull. 2003, 39, 13.
  6. Lhotak, P. Eur. J. Org. Chem. 2004, 2004, 1675.
  7. Morohashi, N.; Narumi, F.; Iki, N.; Hattori, T.; Miyano, S. Chem. Rev. 2006, 106, 5291. https://doi.org/10.1021/cr050565j
  8. Suwattanamala, A.; Magalhães, A. L.; Gomes, J. A. N. F. Chem. Phys. Lett. 2004, 385, 368. https://doi.org/10.1016/j.cplett.2004.01.008
  9. Hong, J.; Ham, S. Tetrahedron Lett. 2008, 49, 2393. https://doi.org/10.1016/j.tetlet.2008.02.061
  10. Lamare, V.; Dozol, J. F.; Thuery, P.; Nierlich, M.; Asfari, Z.; Vicens, J. J. Chem. Soc. Perkin Trans.2 2001, 1920.
  11. Lee, J. K.; Kim, S. K.; Bartsch, R. A.; Vicens, J.; Miyano, S.; Kim, J. S. J. Org. Chem. 2003, 68, 6720. https://doi.org/10.1021/jo034666y
  12. Kim, S. K.; Lee, J. K.; Lee, S. H.; Lim, M. S.; Lee, S. W.; Sim, W.; Kim, J. S. J. Org. Chem. 2004, 69, 2877. https://doi.org/10.1021/jo035567n
  13. Csokai, V.; Grun, A.; Parlagh, G.; Bitter, I. Tetrahedron Lett. 2002, 43, 7627. https://doi.org/10.1016/S0040-4039(02)01594-0
  14. Grun, A.; Csokai, V.; Parlagh, G.; Bitter, I. Tetrahedron Lett. 2002, 43, 4153. https://doi.org/10.1016/S0040-4039(02)00764-5
  15. Bouhroum, S.; Arnaud-Neu, F.; Asfari, Z.; Vicens, J. Russ. Chem. Bull. 2004, 53, 1544. https://doi.org/10.1023/B:RUCB.0000046253.11118.9e
  16. van Leeuwen, F. W. B.; Beijleveld, H.; Miermans, C. J. H.; Huskens, J. Verboom, W.; Reinhoudt, D. N. Anal. Chem. 2005, 77, 4611. https://doi.org/10.1021/ac050524n
  17. Kumar, M.; Dhir, A.; Bhalla, V. Tetrahedron 2009, 65, 7510. https://doi.org/10.1016/j.tet.2009.07.014
  18. Yang, K. Y.; Kang, K. D.; Park, Y. H.; Koo, I. S.; Lee, I. Chem. Phys. Lett. 2003, 381, 239. https://doi.org/10.1016/j.cplett.2003.10.001
  19. Case, D. A.; Darden, T. A.; Cheatham, III, T. E.; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Merz, K. M.; Pearlman, D. A.; Crowley, M.; Walker, R. C.; Zhang, W.; Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Wong, K. F.; Paesani, F.; Wu, X.; Brozell, S.; Tsui, V.; Gohlke, H.; Yang, L.; Tan, C.; Mongan, J.; ornak, V.; Cui, G.; Beroza, P.; Mathews, D. H.; Schafmeister, C.; Ross, W. S.; Kollman, P. A. AMBER 9; University of California, San Francisco, 2006.
  20. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; Di- Nola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684. https://doi.org/10.1063/1.448118
  21. Dewar, M.; Zoebisch, E. G.; Healy, E. F. J. Am. Chem. Soc. 1985, 107, 3902. https://doi.org/10.1021/ja00299a024
  22. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  23. Hay, P. J.; Wadt, W. J. Chem. Phys. 1985, 82, 299. https://doi.org/10.1063/1.448975
  24. Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 4811. https://doi.org/10.1021/jp000497z
  25. Tsuzuki, S.; Luthi, H. P. J. Chem. Phys. 2001, 114, 3949. https://doi.org/10.1063/1.1344891
  26. Zhao, Y.; Tishchenko, O.; Truhlar, D. G. J. Phys. Chem. B 2005, 109, 19046. https://doi.org/10.1021/jp0534434
  27. Schreiner, P. R.; Fokin, A. A.; Pascal, D. G.; de Meijere, A. Org. Lett. 2006, 8, 3635. https://doi.org/10.1021/ol0610486
  28. Zhao. Y.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 6908. https://doi.org/10.1021/jp048147q
  29. Dkhissi, A.; Blossey, R. Chem. Phys. Lett. 2007, 439, 35. https://doi.org/10.1016/j.cplett.2007.03.065
  30. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. https://doi.org/10.1021/cr00088a005
  31. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K.; Burant, J. C.; Millam, J. M.; Iyengay, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Comperts, R.; Startmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenbuerg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chem, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
  32. Pedersen, C. J. Am. Chem. Soc. 1970, 92, 391 https://doi.org/10.1021/ja00705a606
  33. Zheng, X.; Wang, X.; Yi, S.; Wang, N.; Peng, Y. J. Comput. Chem. 2009, in press.
  34. Glendening, E. D.; Feller, D.; Thompson, M. A. J. Am. Chem. Soc. 1994, 116, 10657. https://doi.org/10.1021/ja00102a035

Cited by

  1. mPW1PW91 Calculated Structures and IR Spectra of Thiacalix[4]biscrown-5 Complexed with Alkali Metal Ions vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1685
  2. Effect of Crown Ring Size and Upper Moiety on the Extraction of s-Block Metals by Ionizable Calixcrown Nano-baskets vol.32, pp.11, 2010, https://doi.org/10.5012/bkcs.2011.32.11.3979
  3. Metal ion shuttling mechanism through thiacalix[4]crown: a computational study vol.53, pp.15, 2010, https://doi.org/10.1016/j.tetlet.2012.02.036
  4. Thiacalix[4]‐bis‐crown with Hard Cavities and Soft Bridges Exhibiting Endocyclic Potassium(I) Complexes and Exocyclic Silver(I) Coordination Polymers vol.2018, pp.31, 2010, https://doi.org/10.1002/ejic.201800719
  5. Integrating redox-response in crown ethers by disulfide incorporation: a computational approach vol.32, pp.5, 2010, https://doi.org/10.1007/s11224-021-01761-7