DOI QR코드

DOI QR Code

Complex Formation of Adenosine 3',5'-Cyclic Monophosphate with β-Cyclodextrin: Kinetics and Mechanism by Ultrasonic Relaxation

  • Published : 2010.02.20

Abstract

Adenosine 3',5'-cyclic monophosphate (cAMP) is a second messenger responsible for a multitude of cellular responses. In this study, we utilized $\beta$-cyclodextrin ($\beta$-CD) as an artificial receptor with a hydrophobic cavity to elucidate the inclusion kinetics of cAMP in a hydrophobic environment using the ultrasonic relaxation method. The results revealed that the interaction of cAMP with $\beta$-CD followed a single relaxation curve as a result of host-guest interactions. The inclusion of cAMP into the $\beta$-CD cavity was found to be a diffusion-controlled reaction. The dissociation of cAMP from the $\beta$-CD cavity was slower than that of adenosine 5'-monophosphate (AMP). The syn and anti glycosyl conformations of adenine nucleotides are considered to play an important role in formation of the inclusion complex. Taken together, our findings indicate that hydrophobic interactions are involved in the inclusion complex formation of cAMP with $\beta$-CD and provide insight into the interactions of cAMP with cAMP-binding proteins.

Keywords

References

  1. McKnight, G. S. Curr. Opin. Cell Biol. 1991, 3, 213. https://doi.org/10.1016/0955-0674(91)90141-K
  2. Kopperud, R.; Krakstad, C.; Selheim, F.; Doskeland, S. O. FEBS Lett. 2003, 546, 121. https://doi.org/10.1016/S0014-5793(03)00563-5
  3. Xu, R. X.; Hassell, A. M.; Vanderwall, D.; Lambert, M. H.; Holmes, W. D.; Luther, M. A.; Rocque, W. J.; Milburn, M. V.; Zhao, Y.; Ke, H.; Nolte, R. T. Science 2000, 288, 1822. https://doi.org/10.1126/science.288.5472.1822
  4. Handa, N.; Mizohata, E.; Kishishita, S.; Toyama, M.; Morita, S.; Uchikubo-Kamo, T.; Akasaka, R.; Omori, K.; Kotera, J.; Terada, T.; Shirouzu, M.; Yokoyama, S. J. Biol. Chem. 2008, 283, 19657. https://doi.org/10.1074/jbc.M800595200
  5. Szejtli, J. Chem. Rev. 1998, 98, 1743. https://doi.org/10.1021/cr970022c
  6. Fukahori, T.; Kondo, M.; Nishikawa, S. J. Phys. Chem. B 2006, 110, 4487. https://doi.org/10.1021/jp058205n
  7. Nishikawa, S.; Kondo, M.; Kamimura, E.; Xing, S. Bull. Chem. Soc. Jpn. 2007, 80, 694. https://doi.org/10.1246/bcsj.80.694
  8. Kondo, M.; Nishikawa, S. J. Phys. Chem. B 2007, 111, 13451. https://doi.org/10.1021/jp074555t
  9. Liu, L.; Guo, Q.-X. J. Incl. Phenom. Macrocycl. Chem. 2002, 42, 1. https://doi.org/10.1023/A:1014520830813
  10. Stella, V. J.; Rao, V. M.; Zannou, E. A.; Zia, V. V. Adv. Drug Deliv. Rev. 1999, 36, 3. https://doi.org/10.1016/S0169-409X(98)00052-0
  11. Seno, M.; Lin, M. L.; Iwamoto, K. J. Chromatogr. 1990, 523, 293. https://doi.org/10.1016/0021-9673(90)85032-Q
  12. Formoso, C. Biochem. Biophys. Res. Commun. 1973, 50, 999. https://doi.org/10.1016/0006-291X(73)91505-2
  13. Suzuki, I.; Miura, T.; Anzai, J. J. Supramol. Chem. 2001, 1, 283. https://doi.org/10.1016/S1472-7862(02)00065-5
  14. Bae, J. R.; Lee, C. Bull. Korean Chem. Soc. 2009, 30, 145. https://doi.org/10.5012/bkcs.2009.30.1.145
  15. Hemmes, P.; Oppenheimer, L.; Jordan, F. J. Chem. Soc. Chem. Commun. 1976, 929.
  16. Kato, S.; Nomura, H.; Miyahara, Y. J. Phys. Chem. 2002, 89, 5417. https://doi.org/10.1021/j100271a021
  17. Wang, H.; Robinson, H.; Ke, H. J. Mol. Biol. 2007, 371, 302. https://doi.org/10.1016/j.jmb.2007.05.060
  18. Huai, Q.; Colicelli, J.; Ke, H. Biochemistry 2003, 42, 13220. https://doi.org/10.1021/bi034653e
  19. Seno, M.; Lin, M.; Iwamoto, K. J. Chromatogr. A 1990, 508, 127. https://doi.org/10.1016/S0021-9673(00)91245-7
  20. Hao, X.; Liang, C.; Jian-Bin, C. Analyst 2002, 127, 834. https://doi.org/10.1039/b200594h
  21. Card, G. L.; England, B. P.; Suzuki, Y.; Fong, D.; Powell, B.; Lee, B.; Luu, C.; Tabrizizad, M.; Gillette, S.; Ibrahim, P. N.; Artis, D. R.; Bollag, G.; Milburn, M. V.; Kim, S. H.; Schlessinger, J.; Zhang, K. Y. Structure 2004, 12, 2233. https://doi.org/10.1016/j.str.2004.10.004
  22. Zhang, K. Y.; Card, G. L.; Suzuki, Y.; Artis, D. R.; Fong, D.; Gillette, S.; Hsieh, D.; Neiman, J.; West, B. L.; Zhang, C.; Milburn, M. V.; Kim, S. H.; chlessinger, J.; Bollag, G. Mol. Cell 2004, 15, 279. https://doi.org/10.1016/j.molcel.2004.07.005
  23. Jin, S. L.; Swinnen, J. V.; Conti, M. J. Biol. Chem. 1992, 267, 18929.
  24. Lee, A.; Chalikian, T. V. Biophys. Chem. 2001, 92, 209. https://doi.org/10.1016/S0301-4622(01)00200-9
  25. Raffaini, G.; Ganazzoli, F. Chem. Phys. 2007, 333, 128. https://doi.org/10.1016/j.chemphys.2007.01.015

Cited by

  1. Study of the dynamic complex formation of pentanoic acid with β-cyclodextrin by using an ultrasonic relaxation method vol.63, pp.2, 2013, https://doi.org/10.3938/jkps.63.193
  2. Ultrasonic Absorption Measurements of Propionic Acid Derivatives of NSAID and β-Cyclodextrin in Aqueous Solution vol.37, pp.6, 2016, https://doi.org/10.1002/bkcs.10778
  3. Ultrasonic Relaxation for Complexation Reaction Between β-Cyclodextrin and Butanoic Acid in Aqueous Solution vol.31, pp.2, 2010, https://doi.org/10.7776/ask.2012.31.2.100
  4. 벤조산 유도체와 베타 사이클로덱스트린의 복합체 형성반응에 의한 초음파 완화 vol.36, pp.6, 2010, https://doi.org/10.7776/ask.2017.36.6.387