DOI QR코드

DOI QR Code

Effective Parameters for the Precise Control of Thin Film Buckling on Elastomeric Substrates

  • Published : 2010.02.20

Abstract

This paper reports a simple and versatile technique for generating highly controllable sinusoidal nanostructures on the surface of poly-(dimethylsiloxane) (PDMS). The sinusoidal features were generated by oxidizing PDMS slabs with oxygen plasma, then stretching them by wrapping around a cylinderical surface, and finally allowing them to relax. The wavelength and amplitude could be finely controlled by varying the fabrication conditions such as duration of oxidation, diameter of the glass cylinder, duration of stretching, thickness of the PDMS slabs, and temperature during the second hardening process. The varied trends of the buckling patterns were characterized by using an atomic force microscope.

Keywords

References

  1. Rogers, J. A.; Bao, Z.; Baldwin, K.; Dodabalapur, A.; Crone, B.; Raju, V. R.; Kuck, V.; Katz, H.; Amundson, K.; Ewing, J.; Drzaic, P. Proc. Natl. Acad. Sci. USA 2001, 98, 4835. https://doi.org/10.1073/pnas.091588098
  2. Jin, H. C.; Abelson, J. R.; Erhardt, M. K.; Nuzzo, R. G. J. Vac. Sci. Technol. 2004, B22, 2548.
  3. Lumelsky, V.; Shur, M. S.; Wagner, S. IEEE Sens. J. 2001, 1, 41. https://doi.org/10.1109/JSEN.2001.923586
  4. Someya, T.; Sekitani, T.; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T. Proc. Natl. Acad. Sci. USA 2004, 101, 9966. https://doi.org/10.1073/pnas.0401918101
  5. Nathan, A.; Park, B.; Sazonov, A.; Tao, S.; Chan, I.; Servati, P.; Karim, K.; Charania, T.; Striakhilev, D.; Ma, Q.; Murthy, R. V. R. Microelectron J. 2000, 31, 883. https://doi.org/10.1016/S0026-2692(00)00082-3
  6. Chua, D. B. H.; Ng, H. T. Appl. Phys. Lett. 2000, 76, 721. https://doi.org/10.1063/1.125873
  7. Sun, Y.; Choi, W. M.; Jiang, H.; Huang, Y.; Rogers, J. A. Nat. Nanotechnol. 2006, 1, 201. https://doi.org/10.1038/nnano.2006.131
  8. Jiang, X.; Takayama, S.; Qian, X.; Ostuni, E.; Wu, H.; Bowden, N.; LeDuc, P.; Ingber, D. E.; Whitesides, G. M. Langmuir 2002, 18, 3273. https://doi.org/10.1021/la011668+
  9. Lam, M. T.; Sim, S.; Zhu, X.; Takayama, S. Biomaterials 2006, 27, 4340. https://doi.org/10.1016/j.biomaterials.2006.04.012
  10. Bowden, N.; Brittain, S.; Evans, A. G.; Hutchinson, J. W.; Whitesides, G. M. Nature 1998, 393, 146. https://doi.org/10.1038/30193
  11. Harris, A. K.; Wild, P.; Stopak, D. Science 1980, 208, 177. https://doi.org/10.1126/science.6987736
  12. Moon, M. W.; Lee, S. H.; Sun, J. Y.; Oh, K. H.; Vaziri, A.; Hutchinson, J. W. Proc. Natl. Acad. Sci.USA 2007, 104, 1130. https://doi.org/10.1073/pnas.0610654104
  13. Sharp, J. S.; Jones, R. A. L. Adv. Mater. 2002, 14, 799. https://doi.org/10.1002/1521-4095(20020605)14:11<799::AID-ADMA799>3.0.CO;2-D
  14. Schmid, H.; Wolf, H.; Allenspach, R.; Riel, H.; Karg, S.; Michel, B.; Delamarche, E. Adv. Funct Mater. 2003, 13, 145. https://doi.org/10.1002/adfm.200390021
  15. Khang, D. Y.; Jiang, H. Q.; Huang, Y.; Rogers, J. A. Science 2006, 311, 208. https://doi.org/10.1126/science.1121401
  16. Stafford, C. M.; Harrison, C.; Beers, K. L.; Karim, A.; Amis, E. J.; Vanlandingham, M. R.; Kim, H. C.; Volksen, W.; Miller, R. D.; Simonyi, E. E. Nat. Mater. 2004, 3, 545. https://doi.org/10.1038/nmat1175
  17. Efimenko, K.; Rackaitis, M.; Manias, E.; Vaziri, A.; Mahadevan, L.; Genzer, J. Nat. Mater. 2005, 4, 293. https://doi.org/10.1038/nmat1342
  18. Wilder, E. A.; Guo, S.; Lin-Gibson, S.; Fasolka, M. J.; Stafford, C. M. Macromolecules 2006, 39, 4138. https://doi.org/10.1021/ma060266b
  19. Bakajin, G.; Fountain, E.; Morton, K.; Chou, S. Y.; Sturm, J. C.; Austin, R. H. MRS Bull. 2006, 31, 108. https://doi.org/10.1557/mrs2006.24
  20. Hsueh, C. H.; Lee, S.; Lin, H. Y.; Chen, L. S.; Wang, W. H. Mater. Sci. Eng. A 2006, 433, 316. https://doi.org/10.1016/j.msea.2006.06.106
  21. Chuang, W. C.; Ho, C. T.; Wang, W. C. Opt. Express 2005, 13, 6685. https://doi.org/10.1364/OPEX.13.006685

Cited by

  1. Metastable Patterning of Plasma Nanocomposite Films by Incorporating Cellulose Nanowhiskers vol.28, pp.2, 2012, https://doi.org/10.1021/la202503h
  2. Detection of mRNA from Escherichia coli in drinking water on nanostructured polymeric surfaces using liquid crystals vol.292, pp.5, 2014, https://doi.org/10.1007/s00396-014-3162-7
  3. Liquid crystal sensor for the detection of acetylcholine using acetylcholinesterase immobilized on a nanostructured polymeric surface vol.293, pp.10, 2015, https://doi.org/10.1007/s00396-015-3648-y
  4. Out-of-plane stretching for simultaneous generation of different morphological wrinkles on a soft matter vol.122, pp.7, 2016, https://doi.org/10.1007/s00339-016-0237-y
  5. Diagnosis of tuberculosis using a liquid crystal-based optical sensor vol.24, pp.2, 2016, https://doi.org/10.1007/s13233-016-4019-3
  6. Parallel Detection of Anti-Tuberculosis Antibodies upon a Liquid Crystal-based Optical Sensor vol.37, pp.10, 2016, https://doi.org/10.1002/bkcs.10922
  7. Using liquid crystals to detect DNA hybridization on polymeric surfaces with continuous wavy features vol.21, pp.42, 2010, https://doi.org/10.1088/0957-4484/21/42/425502