DOI QR코드

DOI QR Code

Synthesis and Characterization of Adsorbent for Pb(II)-capture by using Glow Discharge Electrolysis Plasma

  • Gao, Jinzhang (Chemistry & Chemical Engineering College, Northwest Normal University) ;
  • Wang, Youdi (Chemistry & Chemical Engineering College, Northwest Normal University) ;
  • Yang, Wu (Chemistry & Chemical Engineering College, Northwest Normal University) ;
  • Li, Yan (Chemistry & Chemical Engineering College, Northwest Normal University)
  • Published : 2010.02.20

Abstract

A novel polyacrylamide grafted hydrous ferric oxide adsorbent composite has been synthesized by using glow discharge electrolysis plasma. To optimize the synthesis conditions, the following parameters were examined in detail: applied power, discharge time, post polymerization temperature, post polymerization time, amount of crosslinking agent and hydrous ferric oxide gel added and so on. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The removal percentage of the adsorbent in Pb(II) solution was examined and the data obtained showed that the adsorbent composite has a high capacity for lead ion. For the use in wastewater treatment, the thermodynamic and kinetic of Pb(II)-capture were also studied. Results indicated that the adsorption reaction was a spontaneous and an endothermic process, and it seems to be obeyed a pseudo-secondorder rate model. Moreover, the adsorption isotherm of Pb(II)-capture is following the Langmuir and Freundlich isotherm models.

Keywords

References

  1. Smara, A.; Delimi, R.; Chainet, E.; Sandeaux, J. Sep. Purif. Technol. 2007, 57, 103. https://doi.org/10.1016/j.seppur.2007.03.012
  2. Chen, A. H.; Liu, S. C.; Chen, C. Y.; Chen, C. Y. J. Hazard. Mater. 2008, 154, 184. https://doi.org/10.1016/j.jhazmat.2007.10.009
  3. Matsumoto, N.; Uemoto, H.; Saiki, H. Water Res. 2007, 41, 2541. https://doi.org/10.1016/j.watres.2007.03.024
  4. Ng, J. C. Y.; Cheung, W. H.; McKay, G. Chemosphere 2003, 52, 1021. https://doi.org/10.1016/S0045-6535(03)00223-6
  5. Deng, S. B.; Bai, R. B.; Chen, J. P. Langmuir 2003, 19, 5058. https://doi.org/10.1021/la034061x
  6. Al-Faqih, L.; Johnson, P. D.; Allen, S. J. Bioresour. Technol. 2008, 99, 1394. https://doi.org/10.1016/j.biortech.2007.01.059
  7. Sengupta, S. K.; Singh, R.; Srivastava, A. K. Indian J. Chem. Sect. A 1998, 37, 558.
  8. Gao, J. Z.; Wang, A. X.; Fu, Y.; Wu, J. L.; Ma, D. P.; Guo, X.; Li, Y.; Yang, W. Plasma Sci. Technol. 2008, 10, 30. https://doi.org/10.1088/1009-0630/10/1/07
  9. Gao, J. Z.; Guo, X.; Ma, D. P.; Yang, W. Plasma Sci. Technol. 2007, 9, 431. https://doi.org/10.1088/1009-0630/9/4/10
  10. Gao, J. Z. Pak. J. Biol. Sci. 2006, 9, 323. https://doi.org/10.3923/pjbs.2006.323.329
  11. Tezuka, M.; Iwasaki, M. Plasma & Ions 1999, 1, 23.
  12. Lu, Q. F.; Yu, J.; Gao, J. Z. J. Hazard. Mater. 2006, 136, 526. https://doi.org/10.1016/j.jhazmat.2005.11.001
  13. Gao, J. Z.; Yu, J.; Lu, Q. F.; He, X. Y.; Yang, W.; LI, Y.; Pu, L. M.; Yang, Z. M. Dyes & Pigments 2008, 76, 47. https://doi.org/10.1016/j.dyepig.2006.08.033
  14. Harada, K.; Iwasaki, T. Nature 1974, 250, 426. https://doi.org/10.1038/250426a0
  15. Harada, K.; Suzuki, S. Nature 1977, 266, 275. https://doi.org/10.1038/266275a0
  16. Sengupta, S. K.; Sandhir, U.; Misra, N. J. Polym. Sci. Part A 2001, 39, 1584. https://doi.org/10.1002/pola.1134
  17. Wang, A. X.; Gao, J. Z.; Yuan, L.; Yang, W. Plasma Chem. Plasma Process 2009, 29, 387. https://doi.org/10.1007/s11090-009-9185-z
  18. Gao, J. Z.; Fu, Y.; Wang, A. X.; Wu, J. L.; Li, Y.; Yang, W. Chem. J. Internet 2008, 10, 41.
  19. Gao, J. Z.; Wang, A. X.; Li, Y.; Fu, Y.; Wu, J. L.; Wang, Y. D.; Wang, Y. J. React. Funct. Polym. 2008, 68, 1377. https://doi.org/10.1016/j.reactfunctpolym.2008.06.018
  20. Gao, J. Z.; Wang, Y. D.; Wang, A. X.; Wang, Y. J.; Li, Y.; Fu, Y.; Wu, J. L. Chin. J. Appl. Chem. (Ch) 2009, 26, 282.
  21. Sun, S. L.; Wang, L.; Wang, A. Q. J. Hazard. Mater. 2006, 136, 930. https://doi.org/10.1016/j.jhazmat.2006.01.033
  22. Guan, H. M.; Cheng, X. S. Polym. Adv. Technol. 2004, 15, 89. https://doi.org/10.1002/pat.437
  23. Dambies, L.; Guimon, C.; Yiacoumi, S.; Guibal, E. Colloids and Surf. A 2001, 177, 203. https://doi.org/10.1016/S0927-7757(00)00678-6
  24. Sheng, P. X.; Ting, Y. P.; Chen, J. P.; Hong, L. J. Colloid Interface Sci. 2004, 275, 131. https://doi.org/10.1016/j.jcis.2004.01.036
  25. Deng, S. B.; Ting, Y. P. Water Res. 2005, 39, 2167. https://doi.org/10.1016/j.watres.2005.03.033
  26. Amarasinghe, B. M.; Williams, R. A. Chem. Eng. J. 2007, 132, 299. https://doi.org/10.1016/j.cej.2007.01.016
  27. Li, Y. H.; Di, Z. C.; Ding, J.; Wu, D. H.; Luan, Z. K.; Zhu, Y. Q. Water Res. 2005, 39, 605. https://doi.org/10.1016/j.watres.2004.11.004
  28. Genc, O.; Soysal, L.; Bayramoglu, G.; Arica, M. Y.; Bektas, S. J. Hazard. Mater. 2003, 97, 111. https://doi.org/10.1016/S0304-3894(02)00259-5
  29. Bulut, Y.; Baysal, Z. J. Envfer. Manage. 2006, 78, 107. https://doi.org/10.1016/j.jenvman.2005.03.010
  30. Li, X. M.; Liao, D. X.; Xu, X. Q.; Yang, Q.; Zeng, G. M.; Zheng, W.; Guo, L. J. Hazard. Mater. 2008, 159, 610. https://doi.org/10.1016/j.jhazmat.2008.02.068
  31. Issabayeva, G.; Aroua, M. K.; Sulaiman, N. M. N. Bioresour. Technol. 2006, 97, 2350. https://doi.org/10.1016/j.biortech.2005.10.023
  32. Mouflih, M.; Aklil, A.; Sebti, S. J. Hazard. Mater. 2005, 119, 183. https://doi.org/10.1016/j.jhazmat.2004.12.005
  33. Jang, S. H.; Jeong, Y. G.; Min, B. G.; Lyoo, W.S.; Lee, S. C. J. Hazard. Mater. 2008, 159, 294. https://doi.org/10.1016/j.jhazmat.2008.02.018
  34. Ulusoy, U.; Simsek, S. J. Hazard. Mater. 2005, 127, 163. https://doi.org/10.1016/j.jhazmat.2005.06.036
  35. Jang, S. H.; Min, B. G.; Jeong, Y. G.; Lyoo, W. S.; Lee, S. C. J. Hazard. Mater. 2008, 152, 1285. https://doi.org/10.1016/j.jhazmat.2007.08.003
  36. Malkoc, E.; Nuhoglu, Y. Sep. Purif. Technol. 2007, 54, 291. https://doi.org/10.1016/j.seppur.2006.09.017
  37. Chen, A. H.; Liu, S. C.; Chen, C. Y. J. Hazard. Mater. 2008, 154, 184. https://doi.org/10.1016/j.jhazmat.2007.10.009
  38. Manju, G. N.; Krishnan, K. A.; Vinod, V. P.; Anirudhan, T. S. J. Hazard. Mater. 2002, 91, 221. https://doi.org/10.1016/S0304-3894(01)00392-2
  39. Gertz, C.; Klostermann, S. Eur. J. Lipid Sci. Technol. 2002, 104, 762. https://doi.org/10.1002/1438-9312(200211)104:11<762::AID-EJLT762>3.0.CO;2-R
  40. Paleologos, E. K.; Kontominas, M. G. J. Chromatogr. A 2005, 1077, 128. https://doi.org/10.1016/j.chroma.2005.04.037

Cited by

  1. Polymeric superabsorbing composite prepared using a glow-discharge electrolysis plasma for the removal of divalent heavy metal ions from aqueous solutions and its swelling properties vol.52, pp.10, 2012, https://doi.org/10.1002/pen.23170
  2. Synthesis and characterization of poly(methyl methacrylate-butyl acrylate) by using glow-discharge electrolysis plasma vol.68, pp.1, 2012, https://doi.org/10.1007/s00289-011-0517-9
  3. Recent progress in the application of glow-discharge electrolysis plasma vol.12, pp.12, 2014, https://doi.org/10.2478/s11532-014-0575-6
  4. Saturated long linear aliphatic chain sodium monocarboxylates for the corrosion inhibition of lead objects—an initiative towards the conservation of our lead cultural heritage vol.21, pp.3, 2017, https://doi.org/10.1007/s10008-016-3402-5
  5. )/MB/MV vol.8, pp.44, 2017, https://doi.org/10.1039/C7PY01564J
  6. Electrochemical and Surface Study of Neutralized Dodecanoic Acid on a Lead Substrate vol.161, pp.3, 2014, https://doi.org/10.1149/2.071403jes
  7. spores pp.1520-5754, 2019, https://doi.org/10.1080/01496395.2019.1576733
  8. Removal of BTEX from aqueous solution using Moringa oleifera seed cake. vol.33, pp.10, 2010, https://doi.org/10.1080/09593330.2011.621451
  9. Polypyrrole-Doped Conductive Self-Healing Composite Hydrogels with High Toughness and Stretchability vol.22, pp.3, 2021, https://doi.org/10.1021/acs.biomac.0c01777
  10. Polypyrrole-doped conductive self-healing multifunctional composite hydrogels with a dual crosslinked network vol.17, pp.36, 2021, https://doi.org/10.1039/d1sm00682g