DOI QR코드

DOI QR Code

The Properties of RF Sputtered Zirconium Oxide Thin Films at Different Plasma Gas Ratio

  • Park, Ju-Yun (Department of Chemistry, Pukyong National University) ;
  • Heo, Jin-Kook (Department of Chemistry, Pukyong National University) ;
  • Kang, Yong-Cheol (Department of Chemistry, Pukyong National University)
  • Published : 2010.02.20

Abstract

Zirconium oxide thin films deposited on the p-type Si(100) substrates by radio-frequency (RF) reactive magnetron sputtering with different plasma gas ratios have been studied by using spectroscopic ellipsometry (SE), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The deposition of the films was monitored by the oxygen gas ratio which has been increased from 0 to 80%. We found that the thickness and roughness of the zirconium oxide thin films are relatively constant. The XRD revealed that the deposited thin films have polycrystalline phases, Zr(101) and monoclinic $ZrO_2$ ($\bar{1}31$). The XPS result showed that the oxidation states of zirconium suboxides were changed to zirconia form with increasing $O_2$ gas ratio.

Keywords

References

  1. Miller, T. M.; Grassian, V. H. J. Am. Chem. Soc. 1995, 117, 10969. https://doi.org/10.1021/ja00149a020
  2. Zhang, Q.; Li, X.; Shen, J.; Wu, G.; Wang, J.; Chen, L. Mater. Lett. 2000, 45, 311. https://doi.org/10.1016/S0167-577X(00)00124-5
  3. Izu, N.; Shin, W.; Matsubara, I.; Murayama, N.; Oh-hori, N.; Itou, M. Sens. Actuators B 2005, 108, 216. https://doi.org/10.1016/j.snb.2004.11.034
  4. Filipescu, M.; Scarisoreanu, N.; Craciun, V.; Mitu, B.; Purice, A.; Moldovan, A.; Ion, V.; Toma, O.; Dinescu, M. Appl. Surf. Sci. 2007, 253, 8184. https://doi.org/10.1016/j.apsusc.2007.02.166
  5. Venkataraj, S.; Kappertz, O.; Liesch, C.; Detemple, R.; Jayavel, R.; Wuttig, M. Vacuum 2004, 75, 7. https://doi.org/10.1016/j.vacuum.2003.12.127
  6. Ji, Z.; Haynes, J. A.; Ferber, M. K.; Rigsbee, J. M. Surf. Coat. Technol. 2001, 135, 109. https://doi.org/10.1016/S0257-8972(00)00910-5
  7. Torres-Huerta, A. M.; Domínguez-Crespo, M. A.; Ramirez-Meneses, E.; Vargas-Garcia, J. R. Appl. Surf. Sci. 2009, 255, 4792. https://doi.org/10.1016/j.apsusc.2008.11.059
  8. Komatsu, Y.; Sato, T.; Ito, S.; Akashi, K. Thin Solid Films 1999, 341, 132. https://doi.org/10.1016/S0040-6090(98)01509-0
  9. Brenier, R.; Mugnier, J.; Mirica, E. Appl. Surf. Sci. 1999, 143, 85. https://doi.org/10.1016/S0169-4332(98)00901-5
  10. Suematsu, H.; Kishi, T.; Inoue, J.; Hirai, M.; Suzuki, T.; Yunogami, T.; Jiang, W.; Yatsui, K. Mater. Lett. 2007, 61, 3635. https://doi.org/10.1016/j.matlet.2006.12.004
  11. Lin, J. M.; Hsu, M. C.; Fung K. Z. J. Power Sources 2006, 159, 49. https://doi.org/10.1016/j.jpowsour.2006.04.116
  12. Chua, D. H. C.; Milne, W. I.; Zhao, Z. W.; Tay, B. K.; Lau, S. P.; Carney, T.; White R. G. J. Non-Cryst. Solids 2003, 332, 185. https://doi.org/10.1016/j.jnoncrysol.2003.09.016
  13. Ma, C. Y.; Lapostolle, F.; Briois, P.; Zhang, Q. Y. Appl. Suf. Sci. 2007, 253, 8718. https://doi.org/10.1016/j.apsusc.2007.04.054
  14. Gao, P.; Meng, L. J.; Santos, M. P.; Teixeira, V.; Andritschky, M. Vacuum 2000, 56, 143. https://doi.org/10.1016/S0042-207X(99)00199-2
  15. Gottardi, G.; Laidani, N.; Micheli, V.; Bartali, R.; Anderle, M. Surf. Coat. Technol. 2008, 202, 2332. https://doi.org/10.1016/j.surfcoat.2007.08.052
  16. Koski, K.; Hölsä, J.; Juliet, P. Surf. Coat. Technol. 1999, 120-121, 303. https://doi.org/10.1016/S0257-8972(99)00501-0
  17. JCPDS Database, International Center for Diffraction Data. 2003, PDF 89-4902.
  18. JCPDS Database, International Center for Diffraction Data. 2003, PDF 83-0944.
  19. Wong, M. S.; Chia, W. J.; Yashar, P.; Schneider, J. M.; Sproul, W. D.; Barnett, S. A. Surf. Coat. Technol. 1996, 86-87, 381. https://doi.org/10.1016/S0257-8972(96)03038-1
  20. Matsuoka, M.; Isotani, S.; Sucasaire, W.; Kuratani, N.; Ogata, K. Surf. Coat. Technol. 2008, 202, 3129. https://doi.org/10.1016/j.surfcoat.2007.11.019
  21. Tsunekawa, S.; Asami, K.; Ito, S.; Yashima, M.; Sugimoto, T. Appl. Surf. Sci. 2005, 252, 1651. https://doi.org/10.1016/j.apsusc.2005.03.183
  22. Chun, M. S.; Moon, M. J.; Park, J. Y.; Kang Y. C. Bull. Korean Chem. Soc. 2009, 30, 2729. https://doi.org/10.5012/bkcs.2009.30.11.2729
  23. Yu, G. Q.; Tay, B. K.; Zhao, Z. W. Appl. Phys. A 2005, 81, 405. https://doi.org/10.1007/s00339-004-2602-5

Cited by

  1. Investigation of optical and structural properties of ion-assisted deposition (IAD) ZrO2 thin films vol.14, pp.11, 2013, https://doi.org/10.1007/s12541-013-0271-z
  2. Sol–gel synthesis of tetragonal ZrO2 nanoparticles stabilized by crystallite size and oxygen vacancies vol.67, pp.3, 2013, https://doi.org/10.1007/s10971-013-3112-8
  3. Microwave-Assisted Synthesis, Characterisation and Dielectric Properties of Nanocrystalline Zirconia vol.2014, pp.32, 2014, https://doi.org/10.1002/ejic.201402634
  4. Resistive Switching Behavior of Al/Al2O3/ZrO2/Al Structural Device for Flexible Nonvolatile Memory Application vol.50, pp.7, 2014, https://doi.org/10.1109/TMAG.2013.2296039
  5. :B Thin Film: A Bifunctional Inorganic/Organic Interfacial Glue for Flexible Thin-Film Transistors vol.7, pp.8, 2015, https://doi.org/10.1021/acsami.5b00036
  6. thin films vol.212, pp.4, 2015, https://doi.org/10.1002/pssa.201431489
  7. O plasma vol.3, pp.11, 2016, https://doi.org/10.1088/2053-1591/3/11/116406
  8. Determination of the Thickness and Optical Constants of ZrO2 by Spectroscopic Ellipsometry and Spectrophotometric Method vol.8, pp.None, 2010, https://doi.org/10.1016/j.proeng.2011.03.041
  9. Annealing Temperature Dependence on the Physicochemical Properties of Copper Oxide Thin Films vol.32, pp.4, 2010, https://doi.org/10.5012/bkcs.2011.32.4.1331
  10. Zirconia and hafnia films from single source molecular precursor compounds: Synthesis, characterization and insulating properties of potential high k-dielectrics vol.176, pp.13, 2011, https://doi.org/10.1016/j.mseb.2011.05.024
  11. Electrophoretic enhanced micro arc oxidation of ZrO2–HAp–TiO2 nanostructured porous layers vol.509, pp.38, 2010, https://doi.org/10.1016/j.jallcom.2011.07.035
  12. A study of properties of ZrO2 thin films deposited by magnetron sputtering under different plasma parameters: Biomedical application vol.70, pp.7, 2010, https://doi.org/10.2478/jee-2019-0052
  13. Optimized Fabrication and Characterization of TiO2-Nb2O5-ZrO2 Nanotubes on β-Phase TiZr35Nb28 Alloy for Biomedical Applications v vol.5, pp.6, 2010, https://doi.org/10.1021/acsbiomaterials.9b00356
  14. Synthesis of monodisperse ZrO2 microspheres via urea homogeneous precipitation and its effect on the sintering properties vol.14, pp.8, 2010, https://doi.org/10.1049/mnl.2018.5328
  15. Room temperature chemiresistive gas sensors: challenges and strategies-a mini review vol.30, pp.17, 2019, https://doi.org/10.1007/s10854-019-02025-1
  16. Phase analysis and reduction behaviour of Ce dopant in zirconolite vol.322, pp.1, 2010, https://doi.org/10.1007/s10967-019-06536-3
  17. Application-Specific Oxide-Based and Metal-Dielectric Thin-Film Materials Prepared by Radio Frequency Magnetron Sputtering vol.12, pp.20, 2010, https://doi.org/10.3390/ma12203448
  18. Effect of Anodized TiO2-Nb2O5-ZrO2 Nanotubes with Different Nanoscale Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy vol.12, pp.5, 2010, https://doi.org/10.1021/acsami.9b21878