DOI QR코드

DOI QR Code

Combining Information of Common Metabolites Reveals Global Differences between Colorectal Cancerous and Normal Tissues

  • Chae, Young-Kee (Department of Chemistry and Institute for Chemical Biology) ;
  • Kang, Woo-Young (Department of Chemistry and Institute for Chemical Biology) ;
  • Kim, Seong-Hwan (Department of Internal Medicine, Eulji University College of Medicine) ;
  • Joo, Jong-Eun (Department of Pathology, Eulji University College of Medicine) ;
  • Han, Joon-Kil (Department of Surgery, Eulji University College of Medicine) ;
  • Hong, Boo-Whan (Department of Surgery, Gwangju Samsung Hospital)
  • 발행 : 2010.02.20

초록

Metabolites of colorectal cancer tissues from 12 patients were analyzed and compared with those of the normal tissues by two-dimensional NMR spectroscopy. NMR data were analyzed with the help of the metabolome database and the statistics software. Cancerous tissues showed significantly altered metabolic profiles as compared to the normal tissues. Among such metabolites, the concentrations of taurine, glutamate, choline were notably increased in the cancerous tissues of most patients, and those of glucose, malate, and glycerol were decreased. Changes in individual metabolites varied significantly from patient to patient, but the combination of such changes could be used to distinguish cancerous tissues from normal ones, which could be done by PCA analysis. The traditional chemometric analysis was also performed using AMIX software. By comparing those two results, the analysis via $^1H-^{13}C$ HSQC spectra proved to be more robust and effective in assessing and classifying global metabolic profiles of the colorectal tissues.

키워드

참고문헌

  1. Chan, E. C.; Koh, P. K.; Mal, M.; Cheah, P. Y.; Eu, K. W.; Backshall, A.; Cavill, R.; Nicholson, J. K.; Keun, H. C. J. Proteome. Res. 2009, 8, 352-361. https://doi.org/10.1021/pr8006232
  2. Nicholson, J. K.; Lindon, J. C.; Holmes, E. Xenobiotica. 1999, 29, 1181-1189. https://doi.org/10.1080/004982599238047
  3. Denkert, C.; Budczies, J.; Kind, T.; Weichert, W.; Tablack, P.; Sehouli, J.; Niesporek, S.; Konsgen, D.; Dietel, M.; Fiehn, O. Cancer Res. 2006, 66, 10795-10804. https://doi.org/10.1158/0008-5472.CAN-06-0755
  4. Petrik, V.; Loosemore, A.; Howe, F. A.; Bell, B. A.; Papadopoulos, M. C. British Journal of Neurosurgery 2006, 20, 275-280. https://doi.org/10.1080/02688690600999620
  5. Yang, J.; Xu, G.; Zheng, Y.; Kong, H.; Pang, T.; Lv, S.; Yang, Q. Journal of Chromatography B 2004, 813, 59-65. https://doi.org/10.1016/j.jchromb.2004.09.032
  6. Moreno, A.; Rey, M.; Montane, J. M.; Alonso, J.; Arus, C. NMR Biomed. 1993, 6, 111-118. https://doi.org/10.1002/nbm.1940060202
  7. Longley, D. B.; Allen, W. L.; Johnston, P. G. Biochim. Biophys. Acta 2006, 1766, 184-196.
  8. Fan, T. W. M. Progress in Nuclear Magnetic Resonance Spectroscopy 1996, 28, 161-219. https://doi.org/10.1016/0079-6565(95)01017-3
  9. Lewis, I. A.; Schommer, S. C.; Hodis, B.; Robb, K. A.; Tonelli, M.; Westler, W. M.; Sussman, M. R.; Markley, J. L. Analytical Chemistry 2007, 79, 9385-9390. https://doi.org/10.1021/ac071583z
  10. Goddard, T. D.; Kneller, D. G., 3 ed.; University of California, San Francisco.
  11. Cui, Q.; Lewis, I. A.; Hegeman, A. D.; Anderson, M. E.; Li, J.; Schulte, C. F.; Westler, W. M.; Eghbalnia, H. R.; Sussman, M. R.; Markley, J. L. Nat. Biotechnol. 2008, 26, 162-164. https://doi.org/10.1038/nbt0208-162
  12. Kang, W. Y.; Chae, Y. K. J. Kor. Magn. Reson. 2009, 13, 7-14. https://doi.org/10.6564/JKMRS.2009.13.1.007
  13. Piotto, M.; Moussallieh, F. M.; Dillmann, B.; Imperiale, A.; Neuville, A.; Brigand, C.; Bellocq, J. P.; Elbayed, K.; Namer, I. J. Metabolomics 2009, 5, 292-301. https://doi.org/10.1007/s11306-008-0151-1
  14. Ha, J. H; Won, E. Y.; Yoon, H. S.; Kang, S.; Bae, K. H.; Park, S. G.; Park, B. C.; Choi, B. S.; Lee, J. H.; Chi, S. W. Bull. Kor. Chem. Soc. 2009, 30(7), 1655-1657. https://doi.org/10.5012/bkcs.2009.30.7.1655

피인용 문헌

  1. Distinct Urinary Metabolic Profile of Human Colorectal Cancer vol.11, pp.2, 2012, https://doi.org/10.1021/pr201001a
  2. Metabolomics of colorectal cancer: past and current analytical platforms vol.405, pp.15, 2013, https://doi.org/10.1007/s00216-013-6777-5
  3. Metabonomics of Human Colorectal Cancer: New Approaches for Early Diagnosis and Biomarker Discovery vol.13, pp.9, 2014, https://doi.org/10.1021/pr500443c
  4. Metabolic transformation of breast cancer in a MCF-7 xenograft mouse model and inhibitory effect of volatile oil from Saussurea lappa Decne treatment vol.11, pp.3, 2015, https://doi.org/10.1007/s11306-014-0725-z
  5. Application of NMR Spectroscopy in the Assessment of Radiation Dose in Human Primary Cells vol.12, pp.11, 2015, https://doi.org/10.1002/cbdv.201400431
  6. Growth Medium Composition as Monitored by Two-Dimensional NMR Spectroscopy vol.12, pp.6, 2015, https://doi.org/10.1002/cbdv.201400200
  7. HMGA1 Drives Metabolic Reprogramming of Intestinal Epithelium during Hyperproliferation, Polyposis, and Colorectal Carcinogenesis vol.14, pp.3, 2015, https://doi.org/10.1021/pr501084s
  8. Application of NMR Spectroscopy to Assessment of Radiation Dose and Time Lapse vol.36, pp.5, 2015, https://doi.org/10.1002/bkcs.10252
  9. Expanded metabolomics approach to profiling endogenous carbohydrates in the serum of ovarian cancer patients vol.39, pp.2, 2015, https://doi.org/10.1002/jssc.201500964
  10. Characterizing metabolic changes in human colorectal cancer vol.407, pp.16, 2015, https://doi.org/10.1007/s00216-015-8662-x
  11. Metabolomic profiling in colorectal cancer: opportunities for personalized medicine vol.10, pp.7, 2013, https://doi.org/10.2217/pme.13.73
  12. Metabolomic Markers of Colorectal Tumor With Different Clinicopathological Features vol.10, pp.None, 2010, https://doi.org/10.3389/fonc.2020.00981
  13. Metabolic models predict bacterial passengers in colorectal cancer vol.8, pp.1, 2010, https://doi.org/10.1186/s40170-020-0208-9