DOI QR코드

DOI QR Code

Evaluation of Ensemble Approach for O3 and PM2.5 Simulation

  • Received : 2010.05.21
  • Accepted : 2010.09.14
  • Published : 2010.12.31

Abstract

Inter-comparison of chemical transport models (CTMs) was conducted among four modeling research groups. Model performance of the ensemble approach to $O_3$ and $PM_{2.5}$ simulation was evaluated by using observational data with a time resolution of 1 or 6 hours at four sites in the Kanto area, Japan, in summer 2007. All groups applied the Community Multiscale Air Quality model. The ensemble average of the four CTMs reproduced well the temporal variation of $O_3$ (r=0.65-0.85) and the daily maximum $O_3$ concentration within a factor of 1.3. By contrast, it underestimated $PM_{2.5}$ concentrations by a factor of 1.4-2, and did not reproduce the $PM_{2.5}$ temporal variation at two suburban sites (r=~0.2). The ensemble average improved the simulation of ${SO_4}^{2-}$, ${NO_3}^-$, and ${NH_4}^+$, whose production pathways are well known. In particular, the ensemble approach effectively simulated ${NO_3}^-$, despite the large variability among CTMs (up to a factor of 10). However, the ensemble average did not improve the simulation of organic aerosols (OAs), underestimating their concentrations by a factor of 5. The contribution of OAs to $PM_{2.5}$ (36-39%) was large, so improvement of the OA simulation model is essential to improve the $PM_{2.5}$ simulation.

Keywords

References

  1. Carmichael, G.R., Sakurai, T., Streets, D., Hozumi, Y., Ueda, H., Park, S.U., Fung, C., Han, Z., Kajino, M., Engardt, M., Bennet, C., Hayami, H., Sartelet, K., Holloway, T., Wang, Z., Kannari, A., Fu, J., Matsuda, K., Thongbooncho, N., Amann, M. (2008) MICS-Asia II: The model intercomparison study for Asia Phase II methodology and overview of findings. Atmospheric Environment 42, 3468-3490. https://doi.org/10.1016/j.atmosenv.2007.04.007
  2. Chang, Y.S., Carmichael, G.R., Kurita, H., Ueda, H. (1989) The transport and formation of photochemical oxidants in central Japan. Atmospheric Environment 23, 363-393. https://doi.org/10.1016/0004-6981(89)90584-2
  3. Delle Monache, L., Stull, R.B. (2003) An ensemble air-quality forecast over western Europe during an ozone episode. Atmospheric Environment 37, 3469-3474. https://doi.org/10.1016/S1352-2310(03)00475-8
  4. Dudhia, J. (1993) A nonhydrostatic version of the Penn State/NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Monthly Weather Review 121, 1493-1513. https://doi.org/10.1175/1520-0493(1993)121<1493:ANVOTP>2.0.CO;2
  5. Eder, B., Yu, S. (2006) A performance evaluation of the 2004 release of Models-3 CMAQ. Atmospheric Environment 40, 4811-4824. https://doi.org/10.1016/j.atmosenv.2005.08.045
  6. Fiore, A.M., Dentener, F.J., Wild, O., Cuvelier, C., Schultz, M.G., Hess, P., Textor, C., Schulz, M., Doherty, R.M., Horowitz, L.W., MacKenzie, I.A., Sanderson, M.G., Shindell, D.T., Stevenson, D.S., Szopa, S., Van Dingenen, R., Zeng, G., Atherton, C., Bergmann, D., Bey, I., Carmichael, G., Collins, W.J., Duncan, B.N., Faluvegi, G., Folberth, G., Gauss, M., Gong, S., Hauglustaine, D., Holloway, T., Isaksen, I.S.A., Jacob, D.J., Jonson, J.E., Kaminski, J.W., Keating, T.J., Lupu, A., Marmer, E., Montanaro, V., Park, R.J., Pitari, G., Pringle, K.J., Pyle, J.A., Schroeder, S., Vivanco, M.G., Wind, P., Wojcik, G., Wu, S., Zuber, A. (2009) Multi-model estimates of intercontinental source-receptor relationships for ozone pollution. Journal of Geophysical Research 114, D04301, doi:10.1029/2008JD010816.
  7. Hasegawa, S., Kobayashi, S., Ohara, T., Tanabe, K., Hayami, H., Yomemochi, S., Umezawa, N., Iijima, A., Kumagai, K. (2008) Fine Aerosol Measurement and Modeling in Kanto Area (1), Overview of Measurement. Proceedings of the 49th Annual Meeting of the Japan Society for Atmospheric Environment, 377 (in Japanese).
  8. Hass, H., Builtjes, P.J.H., Simpson, D., Stern, R. (1997) Comparison of model results obtained with several European regional air quality models. Atmospheric Environment 31, 3259-3279. https://doi.org/10.1016/S1352-2310(97)00066-6
  9. Kondo, Y., Takegawa, N., Miyakawa, T., Koike, M., Miyazaki, Y., Kanaya, Y., Mochida, M., Kuwata, M., Morino, Y., Shiraiwa, M. (2010) Formation and transport of aerosols in Tokyo in relation to their physical and chemical properties: a review. Journal of the Meteorological Society of Japan 88, 597-624. https://doi.org/10.2151/jmsj.2010-401
  10. Minoura, H., Takahashi, K., Chow, J.C., Watson, J.G. (2006) Multi-year trend in fine and coarse particle mass, carbon, and ions in downtown Tokyo, Japan. Atmospheric Environment 40, 2478-2487. https://doi.org/10.1016/j.atmosenv.2005.12.029
  11. Morino, Y., Chatani, S., Hayami, H., Sasaki, K., Mori, Y., Morikawa, T., Ohara, T., Hasegawa, S., Kobayashi, S. (2010) Intercomparison of Chemical Transport Model for Evaluation of Model Performance on $O_3\;and\;PM_{2.5}$ Prediction-Case Study on Kanto Area in Summer 2007. Journal of Japan Society for Atmospheric Environment 45, 212-226 (in Japanese with English abstract).
  12. Ohara, T., Yamaji, K., Uno, I., Tanimoto, H., Sugata, S., Nagashima, T., Kurokawa, J., Horii, N., Akimoto, H. (2008) Longterm simulations of surface ozone in East Asia during 1980-2020 with CMAQ and REAS. In NATO Science for peace and security series-C: Environmental Security, Air Pollution Modeling and its Application XIX (Borrego, C. and Miranda, A.I., Eds), Springer, Netherlands, pp. 136-144.
  13. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Wang, W., Powers, J.G. (2005) A descripdescription of the Advanced Research WRF Version 2. NCAR Technical note, NCAR/TN-468+STR, Boulder, 99p.
  14. Turpin, B.J., Lim, H.J. (2001) Species contributions to $PM_{2.5}$ mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Science and Technology 35, 602-610. https://doi.org/10.1080/02786820119445
  15. US Environmental Protection Agency (2007) Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, $PM_{2.5}$, and Regional Haze, Rep. USA EPA-454/B-07-002, US Environmental Protection Agency, Washington, DC.
  16. van Loon, M., Vautard, R., Schaap, M., Bergstrom, R., Bessagnet, B., Brandt, J., Builtjes, P.J.H., Christensen, J.H., Cuvelier, C., Graff, A., Jonson, J.E., Krol, M., Langner, J., Roberts, P., Rouil, L., Stern, R., Tarrason, L., Thunis, P., Vignati, E., White, L., Wind, P. (2007) Evaluation of long-term ozone simulations from seven regional air quality models and their ensemble. Atmospheric Environment 41, 2083-2097. https://doi.org/10.1016/j.atmosenv.2006.10.073
  17. Vautard, R., Builtjes, P.H.J., Thunis, P., Cuvelier, C., Bedogni, M., Bessagnet, B., Honore, C., Moussiopoulos, N., Pirovano, G., Schaap, M., Stern, R., Tarrason, L., Wind, P. (2007) Evaluation and intercomparison of ozone and PM10 simulations by several chemistry transport models over 4 European cities within the City-Delta project. Atmospheric Environment 41, 173-188. https://doi.org/10.1016/j.atmosenv.2006.07.039
  18. Volkamer, R., Jimenez, J.L., San Martini, F., Dzepina, K., Zhang, Q., Salcedo, D., Molina, L.T., Worsnop, D.R., Molina, M.J. (2006) Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected. Geophysical Research Letter 33, L17811, doi:10.1029/2006GL026899.
  19. Wakamatsu, S., Uno, I., Ohara, T., Schere, K.L. (1999) A study of the relationship between photochemical ozone and its precursor emissions of nitrogen oxides and hydrocarbons in Tokyo and surrounding areas, Atmospheric Environment 19, 3097-3108.

Cited by

  1. C) Diurnal Variations in Fine Particles at Sites Downwind from Tokyo, Japan in Summer vol.45, pp.16, 2011, https://doi.org/10.1021/es201400p
  2. Overview of Model Inter-Comparison in Japan’s Study for Reference Air Quality Modeling (J-STREAM) vol.9, pp.1, 2018, https://doi.org/10.3390/atmos9010019
  3. Urban Air Quality Model Inter-Comparison Study (UMICS) for Improvement of PM2.5 Simulation in Greater Tokyo Area of Japan vol.12, pp.2, 2018, https://doi.org/10.5572/ajae.2018.12.2.139
  4. Application of a global nonhydrostatic model with a stretched-grid system to regional aerosol simulations around Japan vol.7, pp.1, 2010, https://doi.org/10.5194/gmdd-7-131-2014
  5. Application of a global nonhydrostatic model with a stretched-grid system to regional aerosol simulations around Japan vol.7, pp.1, 2010, https://doi.org/10.5194/gmdd-7-131-2014
  6. Application of a global nonhydrostatic model with a stretched-grid system to regional aerosol simulations around Japan vol.8, pp.2, 2010, https://doi.org/10.5194/gmd-8-235-2015
  7. Application of a global nonhydrostatic model with a stretched-grid system to regional aerosol simulations around Japan vol.8, pp.2, 2010, https://doi.org/10.5194/gmd-8-235-2015
  8. A novel CMAQ-CNN hybrid model to forecast hourly surface-ozone concentrations 14 days in advance vol.11, pp.1, 2010, https://doi.org/10.1038/s41598-021-90446-6