DOI QR코드

DOI QR Code

Development of transgenic potato with high content of functional carotenoids by using metabolic engineering

대사공학기술을 이용한 기능성 carotenoids 고 생산 감자의 개발 현황

  • Ahn, Mi-Jeong (Department of Agronomy & Medicinal Plant Resources, College of Life Science and Natural Resources, JinJu National University) ;
  • Bae, Jung-Myung (School of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Shin-Woo (Department of Agronomy & Medicinal Plant Resources, College of Life Science and Natural Resources, JinJu National University)
  • 안미정 (진주산업대학교, 생명자원과학대학, 농학.한약자원학부) ;
  • 배정명 (고려대학교 생명공학원) ;
  • 이신우 (진주산업대학교, 생명자원과학대학, 농학.한약자원학부)
  • Received : 2010.10.18
  • Accepted : 2010.11.06
  • Published : 2010.12.31

Abstract

Recently, a number of successful research reports are accumulated to increase the carotenoid level in potato tuber such as $\beta$-carotene, precursor of vitamin A and keto-carotenoid like astaxanthin in which is not synthesized in most plants tissue since it does not contain a specific enzyme to add keto-ring in carotenoid molecule. In particular, keto-carotenoids are more interested due to their strong antioxidant activity. Currently, the content of $\beta$-carotene was increased up to 3,600-fold ($47\;{\mu}g/g$ dry weight) when compared to the control potato tuber, parental cultivar for genetic modification. In addition, astaxanthin, one of the major keto-carotenoid was accumulated up to $14\;{\mu}g/g$ dry weight in potato tuber with red color by over expressing the gene encoding $\beta$-carotene ketolase isolated from marine microorganisms. In this article, we summarized carotenogenesis-related genes that have been used for metabolic engineering of carotenoid biosynthetic pathway in potato. Furthermore, strategies for the accumulation of carotenoids and ketocarotenoids in specific potato tuber, bottle necks, and future works are discussed.

감자의 괴경에 비타민 A의 전구물질인 베타 카로텐 또는 항산화활성이 높으나 일반식물에서는 합성되지 않는 astaxanthin과 같은 케토형 카로티노이드의 집적을 위한 연구가 최근 활발하게 진행되고 있다. 현재까지의 연구 결과를 요약하여 보면 $\beta$-carotene의 함량이 $47\;{\mu}g/g$ dry weight으로 대조구에 비하여 3,600배 까지 증가한 결과가 보고되었다. 또한, 해양 미생물로부터 분리한 $\beta$-carotene ketolase 유전자를 도입한 감자의 괴경에서 astaxanthin 등의 케토형 카로티노이드의 함량이 최고 $14\;{\mu}g/g$ dry weight 까지 증가하여 감자의 색깔이 붉은 색으로 변하였다고 보고하였다. 따라서 본 논문에서는 이들 형질전환 감자의 생산을 위하여 도입한 유전자의 종류, 대사공학적 전략, 문제점 및 향후 연구 방향 등에 관하여 논하고자 하였다.

Keywords

References

  1. Campbell R, Ducreux LJM, Morris WL, Morris JA, Suttle JC, Ramsay G, Bryan GJ, Hedley PE, Taylor MA (2010) The metabolic and developmental roles of carotenoid cleavage dioxygenase 4 from potato (Solanum tuberosum L). Plant Physiol. 154:656-664 https://doi.org/10.1104/pp.110.158733
  2. Diretto G, tavazza R, Welsch R, Pizzichini D, Mourgues F, Papacchioli V, Bayer P, Giuliano G (2006) metabolic engineering of potato tuber carotenoids through tuberspecific silencing of lycopene epsilon cyclase. BMC Plant Biol. 6:13-24 https://doi.org/10.1186/1471-2229-6-13
  3. Diretto G., Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G (2007a) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE 2(4):e350-doi:10.1371/journal.pone.0000350
  4. Diretto G., Welsch R, Tavazza R, Mourgues F, Pizzichini D, Beyer P, Giuliano G (2007b) Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers. BMC Plant Biol. 7:11-19 https://doi.org/10.1186/1471-2229-7-11
  5. Diretto G., Al-Babili S, Tavazza R, Scossa F, Papacchioli V, Migliore M, Beyer P, Giuliano G (2010) Transcriptionalmetabolic networks in $\beta$-carotene-enriched potato tubers: the long and winding road to the “Golden” phenotype. Plant Physiol. 154:899-912 https://doi.org/10.1104/pp.110.159368
  6. Ducreux LJM, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA (2005) Metabolic engineering of high carotenoid potato tubers containing enhanced levels of b-carotene and lutein. J. Exp. Bot. 56:81-89
  7. Gerjets T, Sandmann G (2006) Ketocarotenoid formation in transgenic potato. J. Exp. Bot.57:3639-45 https://doi.org/10.1093/jxb/erl103
  8. Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA (2008) Metabolic engineering of carotenoid biosynthesis in plants. Trends in Biotech. 26:139-145 https://doi.org/10.1016/j.tibtech.2007.12.003
  9. Ha SH, Kim JB, Park JS, Ryu TH, Kim KH, Hahn BS, Kim JB, Kim YH (2003) Carotenoids biosymthesis and metabolic engineering in plants. Kor. J. Plant Biotech. 30:81-95 https://doi.org/10.5010/JPB.2003.30.1.081
  10. Hasunuma T, Takeno S, Hayashi S, Sendai M, Bamba T, Yoshimura S, Tomizawa K, Fukusaki E, Miyake C (2008) Overexpression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase gene in chloroplast contributes to increment of isoprenoid production. J. Bjosci. and Bioeng. 105:518-526 https://doi.org/10.1263/jbb.105.518
  11. Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Cur. Opin. Plant Biol.4:210-218 https://doi.org/10.1016/S1369-5266(00)00163-1
  12. Lopez AB, Van Eck J, Conlin BJ, Paolillo DJ, O’Neill J, Li L, (2008) Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J. Exp. Bot. 59:213-223 https://doi.org/10.1093/jxb/erm299
  13. Lu S, Van Eck J, Zhou X, Lopez AB, OHalloran DM, Cosman KM
  14. Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J, Kochian LV, Kupper H
  15. Earle ED, Cao J, Lia L (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of $\beta$-carotene accumulation. Plant Cell 18:3594-3605 https://doi.org/10.1105/tpc.106.046417
  16. Morris WL, Ducreux LJM, Hedden P, Millam S, Taylor MA (2006a) verexpression of a bacterial 1-deoxy-D-xylulose 5-phosphate synthase gene in potato tubers perturbs the isoprenoid metabolic network: implications for the control of the tuber life cycle. J. Exp. Bot. 57:3007-3018 https://doi.org/10.1093/jxb/erl061
  17. Morris WL, Ducreux LJM, Fraser PD, Millam C, Taylor MA (2006b) Engineering ketocarotenoid biosynthesis in potato tubers. Met. Eng. 8:253-263 https://doi.org/10.1016/j.ymben.2006.01.001
  18. Mullins, E, Milbourne D, Petti C, Doyle-Prestwich BM, Meade C (2006) Potato in the age of biotechnology. Trends Plant Sci. 11:254-260 https://doi.org/10.1016/j.tplants.2006.03.002
  19. Romer S, Lubeck Kauder F, Steiger S, Adomat C, Sandmann G (2002) Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Met. Eng. 4:263-272 https://doi.org/10.1006/mben.2002.0234
  20. Steiger S, Sandmann G (2004) Cloning of two carotenoid ketolase genes from Nostoc punctiforme for the heterologous production of canthaxanthin and astaxanthin. Biotech. Letters 26:813-817 https://doi.org/10.1023/B:BILE.0000025880.91269.cf
  21. Van Eck J, Zhou X, Lu S, Li L (2010) Modulation of carotenoid accumulation in transgenic potato by inducing chromoplast formation with enhanced sink strength. Methods Mol. Biol. 643:77-93 https://doi.org/10.1007/978-1-60761-723-5_6
  22. Ye X, Al-Babili S, Andreas Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (b-carotene) biosynthetic
  23. pathway into (carotenoid-free) rice endosperm. Science 287: 303-305 https://doi.org/10.1126/science.287.5451.303