고분자 전해질 멤브레인용 하이드로퀴논 부분이 포함된 설폰화된 폴리(아릴렌 비페닐설폰 에테르) 공중합체의 합성과 특성평가

Synthesis and characterization of sulfonated poly(arylene biphenylsulfone ether) copolymers containing hydroquinone moiety for polymer electrolyte membrane

  • 유동진 (서남대학교 화학과/임상병리학과)
  • Yoo, Dong-Jin (Department of Chemistry & Medical Technology, Seonam University)
  • 투고 : 2010.04.19
  • 심사 : 2010.06.11
  • 발행 : 2010.06.30

초록

본 연구에서는 4,4'-bis[(4-chlorophenyl)sulfonyl]-1,1'-biphenyl(BCPSBP), 술폰화된 하이드로퀴논, 4,4'-sulfonyldiphenol를 이용하여 새로운 폴리(아릴렌 비페닐설폰 에테르) 공중합체를 합성하였고 이들의 특성을 평가하였다. 첨가한 술폰화된 하이드로퀴논의 몰분율에 따라 PBPSEH-HQ00, PBPSEH-HQ10, PBPSEH-HQ30의 고분자전해질막을 합성하였다. 제조한 공중합체의 구조분석은 NMR, IR, GPC를 사용하여 실시하였고, GPC에서 평균분자량은 62,000-213,000 g $mol^{-1}$이며, 이때 PDI는 1.66-4.04였다. TGA와 DSC를 통하여 열분석을 실시하였고, 고분자의 이온화정도가 많아짐에 따라 $T_{d5%}$$T_{d10%}$는 낮아 졌으며, $T_g$값은 점점 상승하였다. 함습율과 IEC, 이온전도도는 술폰화된 하이드로퀴논 몰분율이 증가함에 따라 증가하였다. 고분자전해질막에서 중요한 양이온 전도도는 $60^{\circ}C$ 및 100%상대습도에서 약 9.4 mS $cm^{-1}$이었다. 측정된 결과로부터 본 연구에서 제조한 탄화수소계 멤브레인은 연료전지용 고분자전해질막으로 사용될 수 있다.

In present work, sulfonated poly(arylene biphenyklsulfone ether) copolymers containing hydroquinone moiety were successfully synthesized using 4,4'-bis[(4-chlorophenyl)sulfonyl]-1,1'-biphenyl(BCPSBP), hydroquinone sulfonic acid potassium salt(sHQ), 4,4'-sulfonyldiphenol and evaluated their characteristics. Three kinds of polymer electrolyte membranes, PBPSEH-HQ00, PBPSEH-HQ10 and PBPSEH-HQ30 were prepared by using mole fraction of sulfonated hydroquinone(sHQ). The structure of the fabricated polymers was analyzed using NMR, IR and GPC. The Mw(weight-average molecular weights) of the polymers were in the range of 62,000-213,000 g $mol^{-1}$, and the molecular weight distribution (Mw/Mn) varied from 1.66-4.04. The thermal analysis of the copolymers was carried out by TGA and DSC. The temperature of Td5% and Td10% was decreased with the mole fraction of sHQ but Tg was increased with the mole fraction. The water uptake, IEC and ion conductivity were increased with increasing the ionic cluster of the polymers. The proton conductivity equal to 9.4 mS $cm^{-1}$ was measured for the PBPSEH-HQ30 membrane at $90^{\circ}C$ and 100% relative humidity. From the observed results it is clear that the prepared hydrocarbon membrane can be considered as suitable polymer electrolyte membrane for the application of PEMFC.

키워드

참고문헌

  1. Larminie. J; Dicks. A, "Fuel cell systems explained", 2nd Ed, Wiley, 2003.
  2. Ramani V; Kunz H. R; Fenton J. M, "Investigation of Nafion/HPA composite membrnaes for high temperature/ low relative humidity PEMFC operation", J. Membr. Sci., 232, 31-44 (2004). https://doi.org/10.1016/j.memsci.2003.11.016
  3. Vielstich W.; Lamm A; Gasteiger H. A, "Handbook of fuel cells", Wiley, 2003.
  4. Li Q.; He R.; Jensen Q. O.; Bjerrum, N. J. "Approaches and recent development of polymer electrolyte membranes for fuel cells operating above $100^{\circ}C$", Chem. Mater, 15, 4896-4915 (2003). https://doi.org/10.1021/cm0310519
  5. Mauritz K. A; Moore R.B, "State of understanding of Nafion", Chem. Rev., 104, 4535-4586 (2004). https://doi.org/10.1021/cr0207123
  6. Ezzell B. R; Carl W. P; Mod W. A, US Patent 4,358, 412, 1982.
  7. Connollym D. J; Gresham W. F, US Patent 3,282,875, 1966.
  8. Heitner-Wirguin C., "Recent advances in perfluorinated ionomer membranes: structure, properties and applications", J. Membr. Sci., 120, 1-33 (1996). https://doi.org/10.1016/0376-7388(96)00155-X
  9. Kerres J. A, "Development of ionomer membranes for fuel cells", J. Membr. Sci., 185, 3-27 (2001). https://doi.org/10.1016/S0376-7388(00)00631-1
  10. Rikukawa M; Sanui K, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Prog. Polym. Sci, 25, 1463-1502 (2000). https://doi.org/10.1016/S0079-6700(00)00032-0
  11. Mochizuki S; Zydney A. L, "Theoretical analysis of pore size distribution effects on membrane transport", J. Membr. Sci., 82(3), 211-228 (1993). https://doi.org/10.1016/0376-7388(93)85186-Z
  12. Schonberger F; Hein M; Kerres J, "Preparation and characterisation of sulfonated partially fluorinated statistical poly(arylene ether sulfone)s and their blends with PBI", Solid State Ionics 178, 547-554 (2007). https://doi.org/10.1016/j.ssi.2007.01.003
  13. Smitha B; Sridhar S; Khan A. A, "Solid polymer electrolyte membranes for fuel cell applications - a review", J. Membr. Sci., 259, 10-26 (2005). https://doi.org/10.1016/j.memsci.2005.01.035
  14. Wootthikanokkhan J; Seeponkai N, "Methanol permeability and properties of DMFC membranes based on sulfonated PEEK/PVDF blends", J. Aplied Polymer Science 102, 5941-5947 (2006). https://doi.org/10.1002/app.25151
  15. Rikukawa M.; Sanui K., "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Polym. Sci, 25, 1463-1502 (2000).
  16. Arnett N. Y.; Harrison W. L.; Adami A. S. B.; Roy A; Lane O; Cromer F; Dong L; McGrath J. E., "Hydrocarbon and partially fluorinated sulfonated copolymer blends as functional membranes for proton exchange membrane fuel cells", J. Power Sources 172, 20-29 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.051
  17. Park S. H.; Park J. S.; Yim S. D.; Park S. H.; Lee Y. M.; Kim C. S., "Preparation of organic/inorganic composite membranes using two types of polymer matrix via a sol-gel process", J. Power Sources 181, 259-266 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.046
  18. Wang F.; Hickner M.; Kim Y. S.; Zawodzinski T. A.; McGrath J. E,. "Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes", J. Membr. Sci., 197, 231-242 (2002). https://doi.org/10.1016/S0376-7388(01)00620-2
  19. William L. Harrison; Feng Wang; Jeffery B. Mecham; Vinayak A. Bhanu; Elinda Hill; Yu Seung Kim; James E. McGrath, "Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers I", J. Power Sources: Part A: Polymer Chemistry, 41, 2264-2276 (2003).
  20. Erno P, "Structure determination of organic compounds: Tables of spectral data", Pretsch E; Buhlmann P; Affolter C, 3rd completely revised and enlarged English edition, Springer, Berlin, 2000, 245-312.
  21. Zaidi S. M. J.; Mikhailenko S. D.; Robertson G. P.; Guiver M. D.; Kaliaguine S, "Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications", J. Membr. Sci., 173, 17-34 (2000). https://doi.org/10.1016/S0376-7388(00)00345-8
  22. Lufrano F.; Squadrito G.; Patti A.; Passalacqua E., "Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells", J. Appl. Polym. Sci. 77, 1250-1257 (2000). https://doi.org/10.1002/1097-4628(20000808)77:6<1250::AID-APP9>3.0.CO;2-R
  23. Chikasige Y.; Chikyu Y.; Miyatake K.; Watanabe M., "Poly(arylene ether) ionomers containing sulfofluorenyl groups for fuel cell applications", Macromolecules 38, 7121-7126 (2005). https://doi.org/10.1021/ma050856u
  24. Zawodzinski T. A.; Springer T. E.; Davey J.; Jestel R.; Lopez C.; Valerio J.; Gottesfeld S., "A comparative study of water uptake by and transport through ionomeric fuel cell membranes", J. Electrochem. Soc, 140(7), 1981-1985 (1993). https://doi.org/10.1149/1.2220749