Anode materials advance in solid oxide fuel cells

고체산화물연료전지 애노드의 재료개발동향

  • Son, Young-Mok (Korea Institute of Science Technology Information) ;
  • Cho, Mann (Korea Institute of Science Technology Information) ;
  • Kil, Sang-Cheol (Korea Institute of Science Technology Information) ;
  • Kim, Sang-Woo (Korea Institute of Science Technology Information) ;
  • Nah, Do-Baek (Korea Institute of Science Technology Information)
  • 손영목 (한국과학기술정보연구원 기술정보분석실) ;
  • 조만 (한국과학기술정보연구원 기술정보분석실) ;
  • 길상철 (한국과학기술정보연구원 기술정보분석실) ;
  • 김상우 (한국과학기술정보연구원 기술정보분석실) ;
  • 나도백 (한국과학기술정보연구원 기술정보분석실)
  • Received : 2009.08.12
  • Accepted : 2010.06.10
  • Published : 2010.06.30

Abstract

Solid oxide fuel cells(SOFCs) directly convert the fuel gases to electric energy through electrochemical reactions. The advantage of SOFCs is that they easily operate with diversified fuels such as natural gases owing to their high temperature operation. However, high temperature operation also incurs the challenge in enhancing long term reliability and durability of SOFCs. The most commonly used anode material is Ni/YSZ. This has, however, some drawbacks in terms of long-term reliability at high temperatures, hydrocarbon fuel usages, and so on, therefore the need to develop the new anode materials increases. This article summarizes the trend of the novel anode materials development of SOFCs.

고체산화물연료전지(SOFCs)는 연료가스를 전기화학반응을 통하여 전기에너지로 직접 전환한다. SOFCs의 이점은 수소인프라가 구축되기 이전이라도 연료의 다양성으로 연료전지를 효과적으로 구동할 수 있다. 한편 낮춰진 운전온도의 IT-SOFCs는 일부 재료의 개발은 다소 여유가 있으나 SOFCs의 완성을 위한 긴 수명과 내구성의 달성을 위한 도전은 계속되고 있다. SOFCs에 유용하게 사용하는 연료는 탄화수소인 천연가스이다. 애노드 재료로 가장 보편적으로 사용하는 재료는 Ni/YSZ서멧이다. 그러나 이는 몇 가지 단점을 가져 연료조건하에서 혼합전도도를 나타내는 새로운 애노드 재료의 개발이 필요하다. 이 논문은 SOFCs 애노드 재료개발에 대한 최근 동향을 기술한다.

Keywords

References

  1. Y. Ji, J. Liu, T.M. He, L.G. Cong, J.X.Wang,W.H. Su, J. Alloys Compd. 353, 257-262, (2003). https://doi.org/10.1016/S0925-8388(02)01198-2
  2. M. Juhl, S. Primdahl, C. Manon, M. Mogensen, J. Power Sources 61, 173-81, (1996). https://doi.org/10.1016/S0378-7753(96)02361-0
  3. Z.P. Shao, S.M. Haile, Nature 431, 170-73, (2004). https://doi.org/10.1038/nature02863
  4. C.R. Xia, W. Rauch, F.L. Chen, M.L. Liu, Solid State Ionics 149, 11-9, (2002). https://doi.org/10.1016/S0167-2738(02)00131-5
  5. S. Mclntosh, R.J. Gorte, Chem. Rev. 104, 4845-865, (2004). https://doi.org/10.1021/cr020725g
  6. S.C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design, and pplications, Elsevier, (2000).
  7. R.J. Gorte, J.M. Vohs, J. Catal. 216, 477-86, (2003). https://doi.org/10.1016/S0021-9517(02)00121-5
  8. M. Brown, S. Primdahl, M. Mogensen, J. Electrochem. Soc. 147, 475-85, (2000). https://doi.org/10.1149/1.1393220
  9. Iida T, Kawano M, Matsui T, Kikuchi R, Eguchi K, J Electrochem Soc 154, 2, B234-B241, (2007). https://doi.org/10.1149/1.2405837
  10. Ekaterina V. Tsipis & Vladislav V. Kharton, J Solid State Electrochem 12, 1367-1391, (2008). https://doi.org/10.1007/s10008-008-0611-6
  11. Corbin SF, Qiao X, J Am Ceram Soc 86, 401-406, (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03312.x
  12. 이시우, "고체산화물연료전지 애노드의 최근 연구동향", KOSEN Expert Review, (2007).
  13. B.C.H. Steele, Solid State Ionics 129, 95-110, (2000). https://doi.org/10.1016/S0167-2738(99)00319-7
  14. S. McIntosh, J.M. Vohs, R.J. Gorte, J. Electrochem. Soc. 150, A470-A476, (2003). https://doi.org/10.1149/1.1559064
  15. A. Lashtabeg, S.J. Skinner, J. Mater. Chem. 16, 3160-3170, (2006).
  16. H. Kim, C. Lu,W.L.Worrell, J.M. Vohs, R.J. Gorte, J. Electrochem. Soc. 149, A247-A250, (2002). https://doi.org/10.1149/1.1445170
  17. S. Lee, J.M. Vohs, R.J. Gorte, J. Electrochem. Soc. 151, A1319-A1323, (2004). https://doi.org/10.1149/1.1774184
  18. Z. Xie,W. Zhu, B. Zhu, C. Xia, Electrochim. Acta 51, 3052-3057, (2006). https://doi.org/10.1016/j.electacta.2005.08.039
  19. Grgicak CM, Green RG, Giorgi JB, J Power Sources 179, 317-328, (2008). https://doi.org/10.1016/j.jpowsour.2007.12.082
  20. MantzourisX, ZouvelouN, Haanappel VAC, Tietz F,Nikolopoulos P, J Mater Sci 42, 24, 10152-10159, (2007). https://doi.org/10.1007/s10853-007-2099-3
  21. C.W. Sun, J. Sun, G.L. Xiao, H.R. Zhang, X.P. Qiu, H. Li, L.Q. Chen, J. Phys. Chem. B 110, 13445-13452, (2006). https://doi.org/10.1021/jp062179r
  22. Beckel D, Bieberle-Hutter A, Harvey A, Infortuna A, Muecke UP, Prestat M, Rupp JLM, Gauckler LJ, J Power Sources 173, 3, 325-345, (2007). https://doi.org/10.1016/j.jpowsour.2007.04.070
  23. Uchida H, Suzuki H, Watanabe M., J Electrochem Soc 145:615 (1998). https://doi.org/10.1149/1.1838312
  24. Ishihara T, Shibayama T, Nishiguchi H, Takita Y, Solid State Ionics 132, 3/4, 209-216, (2000). https://doi.org/10.1016/S0167-2738(00)00660-3
  25. Fukui T, Murata K, Ohara S, Abe H, Naito M, Nogi K. J Power Sources 125:17, (2004).
  26. Jiang SP, Duan YY, Love JG, J Electrochem Soc 149:A1175, (2002). https://doi.org/10.1149/1.1497982
  27. Watanabe M, Uchida H, Shibata M, Mochizuki N, Amikura K. J Electrochem Soc 141:342, (1994). https://doi.org/10.1149/1.2054728
  28. Maric R, Ohara S, Fukui T, Inagaki T, Fujita, J Electrochem Solid State Lett 1:201 (1998).
  29. Tsipis EV, Shlyakhtina AV, Shcherbakova LG, Kolbanev IV, Kharton VV, Vyshatko NP, Frade JR, J Electroceram 10, 3, 153-164, (2003). https://doi.org/10.1023/B:JECR.0000011214.18447.4d
  30. Kharton VV, Tsipis EV, Yaremchenko AA, Vyshatko NP, Shaula AL, Naumovich EN, Frade JR, J Solid State Electrochem 7, 8, 468-476, (2003). https://doi.org/10.1007/s10008-002-0348-6
  31. Tsipis EV, Kharton VV, Vyshatko NP, Frade JR, Marques FMB, Solid State Sci 7, 3, 257-267, (2005). https://doi.org/10.1016/j.solidstatesciences.2004.10.015
  32. Hornes A, Gamarra D, Munuera G, J Power Sources 169, 1, 9-16, (2007). https://doi.org/10.1016/j.jpowsour.2007.01.074
  33. Kurokawa H, Sholklapper TZ, Jacobson CP, De Jonghe LC, Visco SJ, Electrochem Solid State Lett 10:B135, (2007). https://doi.org/10.1149/1.2748630
  34. Tsipis EV, Kharton VV, Frade JR, J Eur Ceram Soc 25:2623, (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.114
  35. X.F. Ye, B. Huang, S.R.Wang, Z.R.Wang, L. Xiong, T.L.Wen, J. Power Sources 164, 203-209, (2007). https://doi.org/10.1016/j.jpowsour.2006.10.056
  36. Ruiz-Morales JC, Nunez P, Buchanan R, Irvine JTS, J Electrochem Soc 150:A1030, (2003). https://doi.org/10.1149/1.1584437
  37. Z. Zhan, S.A. Barnett, Science 308, 844-847, (2005). https://doi.org/10.1126/science.1109213
  38. C.W. Sun, Z. Xie, C.R. Xia, H. Li, L.Q. Chen, Electrochem. Commun. 8, 833-838, (2006). https://doi.org/10.1016/j.elecom.2006.03.018
  39. V. Antonucci, M.L. Faro, D.L. Rosa, G. Monforte, A.S. Arico, P.Antonucci, Proceedings International Hydrogen Energy Congress and Exhibition IHEC 2005, Istanbul, Turkey, July 13-15, (2005).
  40. K. Ahn, H.P. He, J.M. Vohs, R.J. Gorte, Electrochem. Solid-State Lett. 8, A414-A417, (2005). https://doi.org/10.1149/1.1945374
  41. Goodenough JB, Huang Y-H, J Power Sources 173, 1, 1-10, (2007). https://doi.org/10.1016/j.jpowsour.2007.08.011
  42. Goodenough JB, Huang Y-H, J Power Sources 173:1, (2007). https://doi.org/10.1016/j.jpowsour.2007.08.011
  43. Hui S, Petric A, Solid State Ionics 143:275, (2001). https://doi.org/10.1016/S0167-2738(01)00870-0
  44. Georges S, Parrour G, Henault M, Fouletier J, Solid State Ionics 177, 19/25, 2109-2112, (2006). https://doi.org/10.1016/j.ssi.2006.01.033
  45. Madsen BD, Barnett SA, J Electrochem Soc 154:B501, (2007). https://doi.org/10.1149/1.2716552
  46. Tao S, Irvine JTS, J Electrochem Soc 151:A252, (2004). https://doi.org/10.1149/1.1639161
  47. Huang Y-H, Dass RI, Denyszyn JC, Goodenough JB, J Electrochem Soc 153:A1266, (2006). https://doi.org/10.1149/1.2195882
  48. Kharton VV, Tsipis EV, Marozau IP, Viskup AP, Frade JR, Irvine JTS, Solid State Ionics 178:101, (2007). https://doi.org/10.1016/j.ssi.2006.11.012
  49. Jiang SP, Chen XJ, Chan SH, Kwok JT, Khor KA (2006) Solid State Ionics 177:149. https://doi.org/10.1016/j.ssi.2005.09.010
  50. Wan J, Zhu JH, Goodenough JB, Solid State Ionics 177:1211, (2006). https://doi.org/10.1016/j.ssi.2006.04.046
  51. Chen XJ, Liu QL, Chan SH, Brandon NP, Khor KA, J Electrochem Soc 154:B1206, (2007). https://doi.org/10.1149/1.2780866
  52. Y.H. Huang, R.I. Dass, Z.L. Xing, J.B. Goodenough, Science 312, 254-257, (2006). https://doi.org/10.1126/science.1125877
  53. Liu J, Madsen B, Ji Z, Barnett S, Electrochem Solid State Lett 5:A122, (2002). https://doi.org/10.1149/1.1473258
  54. Chen XJ, Liu QL, Chan SH, Brandon NP, Khor KA, J lectrochem Soc 154:B1206, (2007). https://doi.org/10.1149/1.2780866
  55. Ruiz-Morales JC, Canales-Vazquez J, Pena-Martinez J, Lopez DM, Nunz P. Electrochim Acta 52, 278, (2006). https://doi.org/10.1016/j.electacta.2006.05.006
  56. Ruiz-Morales JC, Canales-Vazquez J, Ballesteros-Perez B, Pena-Martinez J, Marrero-Lopez D, Irvine JTS, et al. J Euro Ceram Soc, 27:4223, (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.117
  57. Bastidas DM, Tao SW, Irvine JTS. J Mater Chem, 16, 1603, (2006). https://doi.org/10.1039/b600532b
  58. Jiang SP, Zhang L, Zhang YJ. J Mater Chem, 17, 2627, (2007). https://doi.org/10.1039/b701339f
  59. Canales-Vazquez J, Ruiz-Morales JC, Marrero-Lopez D, Pen-Martinez J, Nunz P, Gomez-Romero P. J Power Sources, 171, 552, (2007). https://doi.org/10.1016/j.jpowsour.2007.05.094
  60. Ruiz-Morales JC, Canales-Vazquez J, Marrero-Lopez D, Perez-Coll D, Pen-Martinez J, Nunz P. J Power Sources, 177, 154, (2008). https://doi.org/10.1016/j.jpowsour.2007.10.094
  61. Bastidas DM, Tao SW, Irvine JTS. J Mater Chem, 16, 1603, (2006). https://doi.org/10.1039/b600532b
  62. Yao Zheng, Zhang, Chunming, Ran, Ran, Cai, Rui; Shao, Zongping; Farrusseng, D, Acta Materialia 57, 1165-1175, (2009). https://doi.org/10.1016/j.actamat.2008.10.047
  63. El-Himri, Abdelouhad, Marrero-Lopez, David, Ruiz-Morales, Juan Carlos, Pena-Martinez, Juan, Nunez, Pedro, Journal of Power Sources, 188, 230-237, (2009). https://doi.org/10.1016/j.jpowsour.2008.11.050
  64. Kyung Bin Yoo, Gyeong Man Choi, Solid State Ionics 180, 867-871, (2009). https://doi.org/10.1016/j.ssi.2009.02.013
  65. Y.H. Huang, R.I. Dass, Z.L. Xing, J.B. Goodenough, Science 312, 254, (2006). https://doi.org/10.1126/science.1125877
  66. Kharton VV, Tsipis EV, Marozau IP, Viskup AP, Frade JR, Irvine JTS, Solid State Ionics 178:101, (2007). https://doi.org/10.1016/j.ssi.2006.11.012
  67. Zha S, Tsang P, Cheng Z, LiuM, J Solid State Chem 178:1844, (2005). https://doi.org/10.1016/j.jssc.2005.03.027
  68. Godickemeier, M. Sasaki, K. Gauckler, L.J. Journal of the Electrochemical Society, 144, 5, 1635-1646, (1997). https://doi.org/10.1149/1.1837653
  69. Chen XJ, Liu QL, Chan SH, Brandon NP, Khor KA, J Electrochem Soc 154:B1206, (2007). https://doi.org/10.1149/1.2780866
  70. Fergus JW, Solid State Ionics 177:1529, (2006). https://doi.org/10.1016/j.ssi.2006.07.012
  71. Pudmich G, Boukamp BA, Gonzalez-Cuenca M, Jungen W, Zipprich W, Tietz F, Solid State Ionics 135:433, (2000). https://doi.org/10.1016/S0167-2738(00)00391-X
  72. Jiang SP, Chan SH, J Mater Sci 39:4405, (2004). https://doi.org/10.1023/B:JMSC.0000034135.52164.6b
  73. Hui S, Petric A, J Eur Ceram Soc 22:1673, (2002). https://doi.org/10.1016/S0955-2219(01)00485-X
  74. B.J.Wuensch,K.W. Eberman, C. Heremans, E.M.Ku, P. Onnerud, E.M.E. Yeo, S.M. Haile, J.K. Stalick, J.D. Jorgensen, Solid State Ionics 129, 111-133, (2000). https://doi.org/10.1016/S0167-2738(99)00320-3
  75. M. Pirzada,R.W. Grimes, L. Minervini, J.F. Maguire, K.E. Sickafus, Solid State Ionics 140, 201-208, (2001). https://doi.org/10.1016/S0167-2738(00)00836-5
  76. S.A. Kramer, H.L. Tuller, Solid State Ionics 82, 15-23, (1995). https://doi.org/10.1016/0167-2738(95)00156-Z
  77. Sabolsky, E.M. Seabaugh, M.M. Ibanez, S. Sabolsky, K. Zhong, Z. Source: ECS Transactions, Vol. 7, No. 1, PART 1, 503-510, (2007).
  78. Mantzouris, X. Triantafyllou, G.; Tietz, F.; Nikolopoulos, P. Source: Journal of Materials Science, 43, 22, 7057-7065, (2008). https://doi.org/10.1007/s10853-008-3063-6
  79. Y. Matsuzaki, I. Yasuda, Solid State Ionics 132, 261. 269, (2000). https://doi.org/10.1016/S0167-2738(00)00653-6
  80. Jens F.B. Rasmussen, Anke Hagen, Journal of Power Sources 191 2009, 534-.541. https://doi.org/10.1016/j.jpowsour.2009.02.001
  81. Zheng-Rong Xu, Jing-Li Luo, Karl T. Chuang, Journal of Power Sources 188 458-462, (2009). https://doi.org/10.1016/j.jpowsour.2008.12.008
  82. K. Sasaki, et al., J. Electrochem. Soci. 153 (11), A2023-A2029, (2006). https://doi.org/10.1149/1.2336075
  83. H. He, R.J. Gorte, J.M. Vohs, Electrochem. Solid State Lett. 8 (6) A279-A280, (2005). https://doi.org/10.1149/1.1896469
  84. S.H. Zha, et al., J. Solid State Chem. 178, 1844-1850, (2005). https://doi.org/10.1016/j.jssc.2005.03.027
  85. R. Munkundan, E.L. Brosha, F.H. Garzon, Electrochem. Solid-State Lett. 7 (1) A5-A7, (2004).
  86. Jung, G. B. Su, A. Lo, K. F. Scientific advances in fuel cell systems; Fuel cells science & technology, 5-19, (2006).
  87. Ihara M, Kusano T, Yokoyama C, J Electrochem Soc 148, A209-A219, (2001). https://doi.org/10.1149/1.1345873
  88. Kammer, K.; Mogensen, M. Solid oxide fuel cells, 781-786, (2003).
  89. Drescher I, Lehnert W, Meusinger J, Electrochim Acta 43, 3059-3068, (1998). https://doi.org/10.1016/S0013-4686(98)00046-2
  90. 80Chan SH, Xia ZT, J Electrochem Soc 148, A388-A394, (2001). https://doi.org/10.1149/1.1357174
  91. Wen C, Kato R, Fukunaga H, Ishitani H, Yamada K, J Electrochem Soc 147, 2076-2080, (2000). https://doi.org/10.1149/1.1393488
  92. Williford RE, Chick LA, Maupin GD, Simner SP, Stevenson JW, J Electrochem Soc 150, A1067-A1072, (2003). https://doi.org/10.1149/1.1586300
  93. Eguchi, K, Kunisa, Y. Kayano, M. 電氣化學および工業物理化學 = Electrochemistry, 64, 596-601, (1996).
  94. Jiang SP, Badwal SPS, Solid State Ionics 123, 209-224, (1999). https://doi.org/10.1016/S0167-2738(99)00124-1
  95. Charpentier P, Fragnaud P, Schleich DM, Gehain E, Solid State Ionics 135, 373-380, (2000). https://doi.org/10.1016/S0167-2738(00)00472-0
  96. Mizusaki J, Tagawa H, Miyaki Y, Yamauchi S, Fueki K, Koshiro I, Hirano K, Solid State Ionics 53/56, 126-134, (1992). https://doi.org/10.1016/0167-2738(92)90374-X
  97. Madsen BD, Barnett SA, Solid State Ionics 176, 2545-2553, (2005). https://doi.org/10.1016/j.ssi.2005.08.004
  98. Murray, E.P. Tsai, T. Barnett, S.A. Solid state ionics, 110, 235-243, (1998). https://doi.org/10.1016/S0167-2738(98)00142-8
  99. Yentekakis, I. V. Jiang, Y. Neophytides, S. Solid oxide fuel cell, 131-142, (1996).
  100. Jiang SP, Mater Sci Eng A 418, 199-210, (2006). https://doi.org/10.1016/j.msea.2005.11.052
  101. 손영목, "SOFCs의 재료개발 동향", ReSEAT프로그램, KISTI, (2008).