Molecular cloning and expression analysis of an interferon stimulated gene 15 from rock bream Oplegnathus fasciatus

  • Kim, Ju-Won (Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University) ;
  • Kwon, Mun-Gyeong (Pathology Division, National Fisheries Research and Development Institute) ;
  • Park, Myoung-Ae (Pathology Division, National Fisheries Research and Development Institute) ;
  • Hwang, Jee-Youn (Pathology Division, National Fisheries Research and Development Institute) ;
  • Park, Hyung-Jun (Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University) ;
  • Baeck, Gun-Wook (Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University) ;
  • Kim, Mu-Chan (Department of Marine Environmental Engineering, Institute of Marine Industry, College of Marine Science, Gyeongsang National University) ;
  • Park, Chan-Il (Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University)
  • 투고 : 2010.04.02
  • 심사 : 2010.06.25
  • 발행 : 2010.08.30

초록

The Interferon stimulated gene 15 (ISG15) is strongly induced in many cell types by IFNs, viral infections, and double-stranded RNA (poly I:C). The ISG15 homologue cDNA was isolated from the rock bream LPS stimulated leukocyte cDNA library. The rock bream ISG15 homologue was found to consist of 833 bp encoding 157 amino acid residues. Compared with other known ISG15 peptide sequences, the most conserved regions of the rock bream ISG15 peptide were found to be the tandem ubiquitin-like domains and a C-terminal LRLRGG conjugating motif, characteristic of mammalian and non-mammalian ISG15 proteins. Phylogenetic analysis based on the deduced amino acid sequence revealed a homologous relationship between the ISG15 sequence of rock bream and that of Atlantic salmon, Atlantic cod, northern snake head, black rockfish and olive flounder. The expression of the rock bream ISG15 molecule was induced in the peripheral blood leukocytes (PBLs) from 1 to 24 h following poly I:C stimulation, with a peak at 3 h post-stimulation. The rock bream ISG15 gene was predominantly expressed in the PBLs, spleen and gill.

키워드

참고문헌

  1. Baeck, G.W., Kim, J.W. and Park, C.I.: Identification and expression analysis of an interferon stimulated gene 15 (ISG15) from black rockfish, Sebastes schlegeli. Fish Shellfish Immunol., 25:679-681, 2008. https://doi.org/10.1016/j.fsi.2008.08.005
  2. Banyer, J.L., Hamilton, N.H., Ramshaw, I.A. and Ramsay, A.J.: Cytokines in innate and adaptive immunity. Rev Immunogenet., 2:359-373, 2000.
  3. Cho, Y.S., Lee, S.Y., Kim, K.H., Kim, S.K., Kim, D.S. and Nam, Y.K.: Gene structure and differential modulation of multiple rockbream (Oplegnathus fasciatus) hepcidin isoforms resulting from different biological stimulations. Dev Comp Immunol., 33:46-58, 2009. https://doi.org/10.1016/j.dci.2008.07.009
  4. Dao, C.T. and Zhang, D.E.: ISG15: a ubiquitin-like enigma. Front Biosci., 10:2701-2722, 2005. https://doi.org/10.2741/1730
  5. De, Veer, M.J., Holko, M., Frevel, M., Walker, E., Der, S. and Paranjape, J.M.: Functional classification of interferon stimulated genes identified using microarrays. J. Leukoc. Biol., 69:912-920, 2001.
  6. Dempsey, P.W., Vaidya, S.A. and Cheng, G.: The art of war: innate and adaptive immune responses. Cell Mol Life Sci., 60:2604-2621, 2003. https://doi.org/10.1007/s00018-003-3180-y
  7. Furnes, C., Kileng, O., Rinaldo, C.H., Seppola, M., Jensen, I. and Robertsen, B.: Atlantic cod (Gadus morhua L.) possesses three homologues of ISG15 with different expression kinetics and conjugation properties. Dev Comp Immunol., 33:1239-1246, 2009. https://doi.org/10.1016/j.dci.2009.07.005
  8. Gish, W. and David, J.S.: Identification of protein coding regions by database similarity search. Nature Genetics., 3:266-272, 1993. https://doi.org/10.1038/ng0393-266
  9. Haas, A.L., Ahrens, P., Bright, P.M. and Ankel, H.: Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J. Biol. Chem., 262:11315-11323, 1987.
  10. Hawiger, J.: Innate immunity and inflammation: a transcriptional paradigm. Immunol Res., 23:99-109, 2001. https://doi.org/10.1385/IR:23:2-3:099
  11. Jung, S.J. and Oh, M.J.: Iridovirus-like infection associated wirh high mortalities of striped beakperch, Oplegnathus fasciatus (Temminck et Schlegel) in southern coastal areas of the Korean peninsula. J. Fish Dis., 23:223-226, 2000. https://doi.org/10.1046/j.1365-2761.2000.00212.x
  12. Knight, Jr. E., Fahey, D., Cordova, B., Hillman, M., Kutny, R. and Reich, N.: A 15-kDa interferon-induced protein is derived by COOH-terminal processing of a 17-kDa precursor. J. Biol Chem., 263(10): 4520-4522, 1988.
  13. Lee, J.H., Noh, J.K., Kim, H.C., Park, C.J., Min, B.H., Choi, S.J., Myeng, J.I., Park, H.J. and Park, C.I.: Expressed sequence tags analysis of immunerelevant genes in rock bream Oplegnathus fasciatus peripheral leukoctes stimulated with LPS. J. Fish pathol., 22(3); 353-366, 2009.
  14. Liu, M., Reimschuessel, R. and Hassel, B.A.: Molecular cloning of the fish interferon stimulated gene, 15 kDa (ISG15) orthologue: a ubiquitin-like gene induced by nephrotoxic damage. Gene, 298(2): 129-139, 2002. https://doi.org/10.1016/S0378-1119(02)00932-0
  15. Loeb, K.R. and Haas, A.L.: The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J. Biol. Chem., 267: 7806-7813, 1992.
  16. Malakhov, M.P., Kim, K.I., Malakhova, O.A., Jacobs, B.S., Borden, E.C. and Zhang, D.E.: High-throughput immunoblotting. Ubiquitin-like protein ISG15 modifies key regulators of signal transduction. J. Biol. Chem., 278:16608-16613, 2003. https://doi.org/10.1074/jbc.M208435200
  17. O'Farrell, C., Vaghefi, N., Cantonnet, M., Buteau, B., Boudinot, P. and Benmansour, A.: Survey of transcript expression in rainbow trout leukocytes reveals a major contribution of interferon-responsive genes in the early response to a rhabdovirus infection. J. Virol., 76:8040-8049, 2002. https://doi.org/10.1128/JVI.76.16.8040-8049.2002
  18. Pitha-Rowe, I.F. and Pitha, P.M.: Viral defense, carcinogenesis and ISG15: novel roles for an old ISG. Cytokine Growth Factor Rev., 18(5-6): 409-417, 2007. https://doi.org/10.1016/j.cytogfr.2007.06.017
  19. Potter, J.L., Narasimhan, J., Mende-Mueller, L. and Haas, A.L.: Precursor processing of pro-ISG15/UCRP, an interferon-beta-induced ubiquitin-like protein. J. Biol. Chem., 274(35):25061-25068, 1999. https://doi.org/10.1074/jbc.274.35.25061
  20. Ritchie, L.J. and Zhang, D.E.: ISG15: the immunological kin of ubiquitin. Semin. Cell Dev. Biol., 15:237-246, 2004. https://doi.org/10.1016/j.semcdb.2003.12.005
  21. Robertsen, B.: The interferon system of teleost fish. Fish Shellfish Immunol., 20(2):172-191, 2006. https://doi.org/10.1016/j.fsi.2005.01.010
  22. Rokenes, T.P., Larsen, R. and Robertsen, B.: Atlantic salmon ISG15: expression and conjugation to cellular proteins in response to interferon, double-stranded RNA and virus infections. Mol. Immunol., 44(5):950-959, 2007. https://doi.org/10.1016/j.molimm.2006.03.016
  23. Seppola, M., Stenvik, J., Steiro, K., Solstad, T., Robertsen, B. and Jensen, I.: Sequence and expression analysis of an interferon stimulated gene (ISG15) from Atlantic cod (Gadus morhua L.). Dev. Comp. Immunol., 31(2):156-171, 2007. https://doi.org/10.1016/j.dci.2006.05.009
  24. Sohn, S.G., Choi, D.L., Do, J.W., Hwang, G.Y. and Park, J.W.: Mass mortalities of cultured striped beakperch, Oplegnathus fasciatus by iridoviral infection. J. Fish pathol., 13:121-127, 2000.
  25. Takeuchi, T. and Yokosawa, H.: ISG15 modification of Ubc13 suppresses its ubiquitin-conjugating activity. Biochem. Biophys. Res. Commun., 336:9-13, 2005. https://doi.org/10.1016/j.bbrc.2005.08.034
  26. Tamura, T., Yanai, H., Savitsky, D. and Taniguchi, T.: The IRF family transcription factors in immunity and oncogenesis. Annu. Rev. Immunol., 26:535-584, 2008. https://doi.org/10.1146/annurev.immunol.26.021607.090400
  27. Thompson, J.D., Higgis, D.G. and Gibson, T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res., 22:4673-4680, 1994. https://doi.org/10.1093/nar/22.22.4673
  28. Zenke, K. and Kim, K.H.: Molecular cloning and expression analysis of three Mx isoforms of rock bream, Oplegnathus fasciatus. Fish Shellfish Immunol., 26(4):599-605, 2009. https://doi.org/10.1016/j.fsi.2008.09.012
  29. Zhang, Y.B., Jiang, J., Chen, Y.D., Zhu, R., Shi, Y. and Zhang, Q.Y.: The innate immune response to grass carp hemorrhagic virus (GCHV) in cultured Carassius auratus blastulae (CAB) cells. Dev. Comp. Immunol., 31(3):232-243, 2007. https://doi.org/10.1016/j.dci.2006.05.015
  30. Zhang, Y.B., Wang, Y.L. and Gui, J.F.: Identification and characterization of two homologues of interferonstimulated gene ISG15 in crucian carp. Fish Shellfish Immunol., 23(1):52-61, 2007. https://doi.org/10.1016/j.fsi.2006.09.004
  31. Zou, W., Papov, V., Malakhova, O., Kim, K.I., Dao, C. and Li, J.: ISG15 modification of ubiquitin E2 Ubc13 disrupts its ability to form thioester bond with ubiquitin. Biochem. Biophys. Res. Commun., 336:61-68, 2005. https://doi.org/10.1016/j.bbrc.2005.08.038