DOI QR코드

DOI QR Code

Relationships between genetic polymorphisms and transcriptional profiles for outcome prediction in anticancer agent treatment

  • Paik, Hyo-Jung (Department of Bio and Brain Engineering, KAIST) ;
  • Lee, Eun-Jung (Department of Genetics, Brigham and Women's Hospital and Havard Medical School) ;
  • Lee, Do-Heon (Department of Bio and Brain Engineering, KAIST)
  • Received : 2010.05.15
  • Accepted : 2010.07.19
  • Published : 2010.12.31

Abstract

In the era of personal genomics, predicting the individual response to drug-treatment is a challenge of biomedical research. The aim of this study was to validate whether interaction information between genetic and transcriptional signatures are promising features to predict a drug response. Because drug resistance/susceptibilities result from the complex associations of genetic and transcriptional activities, we predicted the inter-relationships between genetic and transcriptional signatures. With this concept, captured genetic polymorphisms and transcriptional profiles were prepared in cancer samples. By splitting ninety-nine samples into a trial set (n = 30) and a test set (n = 69), the outperformance of relationship-focused model (0.84 of area under the curve in trial set, P = $2.90{\times}10^{-4}$) was presented in the trial set and validated in the test set, respectively. The prediction results of modeling show that considering the relationships between genetic and transcriptional features is an effective approach to determine outcome predictions of drug-treatment.

Keywords

References

  1. Yap, T. A., Carden, C. P. and Kaye, S. B. (2009) Beyond chemotherapy: targeted therapies in ovarian cancer. Nat. Rev. Cancer 9, 167-181. https://doi.org/10.1038/nrc2583
  2. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T. and Thun, M. J. (2008) Cancer statistics, 2008. CA Cancer J. Clin. 58, 71-96. https://doi.org/10.3322/CA.2007.0010
  3. Santos, A. M., Sousa, H., Portela, C., Pereira, D., Pinto, D., Catarino, R., Rodrigues, C., Araujo, A. P., Lopes, C. and Medeiros, R. (2006) TP53 and P21 polymorphisms: response to cisplatinum/paclitaxel-based chemotherapy in ovarian cancer. Biochem. Biophys. Res. Commun. 340, 256-262. https://doi.org/10.1016/j.bbrc.2005.11.176
  4. Fuchs, D., Daniel, V., Sadeghi, M., Opelz, G. and Naujokat, C. (2010) Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells. Biochem. Biophys. Res. Commun. 394, 1098-1104. https://doi.org/10.1016/j.bbrc.2010.03.138
  5. Judson, P. L., Watson, J. M., Gehrig, P. A., Fowler, W. C., Jr. and Haskill, J. S. (1999) Cisplatin inhibits paclitaxel-induced apoptosis in cisplatin-resistant ovarian cancer cell lines: possible explanation for failure of combination therapy. Cancer Res. 59, 2425-2432.
  6. Denkert, C., Budczies, J., Darb-Esfahani, S., Gyorffy, B., Sehouli, J., Konsgen, D., Zeillinger, R., Weichert, W., Noske, A., Buckendahl, A. C., Muller, B. M., Dietel, M. and Lage, H. (2009) A prognostic gene expression index in ovarian cancer - validation across different independent data sets. J. Pathol. 218, 273-280. https://doi.org/10.1002/path.2547
  7. Sabatier, R., Finetti, P., Cervera, N., Birnbaum, D. and Bertucci, F. (2009) Gene expression profiling and prediction of clinical outcome in ovarian cancer. Crit. Rev. Oncol. Hematol. 72, 98-109. https://doi.org/10.1016/j.critrevonc.2009.01.007
  8. Hartmann, L. C., Lu, K. H., Linette, G. P., Cliby, W. A., Kalli, K. R., Gershenson, D., Bast, R. C., Stec, J., Iartchouk, N., Smith, D. I., Ross, J. S., Hoersch, S., Shridhar, V., Lillie, J., Kaufmann, S. H., Clark, E. A. and Damokosh, A. I. (2005) Gene expression profiles predict early relapse in ovarian cancer after platinum-paclitaxel chemotherapy. Clin. Cancer Res. 11, 2149-2155. https://doi.org/10.1158/1078-0432.CCR-04-1673
  9. Kim, H. S., Kim, M. K., Chung, H. H., Kim, J. W., Park, N. H., Song, Y. S. and Kang, S. B. (2009) Genetic polymorphisms affecting clinical outcomes in epithelial ovarian cancer patients treated with taxanes and platinum compounds: a Korean population-based study. Gynecol. Oncol. 113, 264-269. https://doi.org/10.1016/j.ygyno.2009.01.002
  10. Green, H., Soderkvist, P., Rosenberg, P., Horvath, G. and Peterson, C. (2006) mdr-1 single nucleotide polymorphisms in ovarian cancer tissue: G2677T/A correlates with response to paclitaxel chemotherapy. Clin. Cancer Res. 12, 854-859. https://doi.org/10.1158/1078-0432.CCR-05-0950
  11. Marsh, S., Paul, J., King, C. R., Gifford, G., McLeod, H. L. and Brown, R. (2007) Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: the Scottish Randomised Trial in Ovarian Cancer. J. Clin. Oncol. 25, 4528-4535. https://doi.org/10.1200/JCO.2006.10.4752
  12. Huang, R. S., Duan, S., Shukla, S. J., Kistner, E. O., Clark, T. A., Chen, T. X., Schweitzer, A. C., Blume, J. E. and Dolan, M. E. (2007) Identification of genetic variants contributing to cisplatin-induced cytotoxicity by use of a genomewide approach. Am. J. Hum. Genet. 81, 427-437. https://doi.org/10.1086/519850
  13. Li, J. and Burmeister, M. (2005) Genetical genomics: combining genetics with gene expression analysis. Hum. Mol. Genet. 14 Spec No. 2, R163-169. https://doi.org/10.1093/hmg/ddi267
  14. Kamazawa, S., Kigawa, J., Kanamori, Y., Itamochi, H., Sato, S., Iba, T. and Terakawa, N. (2002) Multidrug resistance gene-1 is a useful predictor of Paclitaxel-based chemotherapy for patients with ovarian cancer. Gynecol. Oncol. 86, 171-176. https://doi.org/10.1006/gyno.2002.6738
  15. Perek, N., Le Jeune, N., Denoyer, D. and Dubois, F. (2005) MRP-1 protein expression and glutathione content of in vitro tumor cell lines derived from human glioma carcinoma U-87-MG do not interact with 99mTc-glucarate uptake. Cancer Biother. Radiopharm. 20, 391-400. https://doi.org/10.1089/cbr.2005.20.391
  16. Yamaguchi, H., Hishinuma, T., Endo, N., Tsukamoto, H., Kishikawa, Y., Sato, M., Murai, Y., Hiratsuka, M., Ito, K., Okamura, C., Yaegashi, N., Suzuki, N., Tomioka, Y. and Goto, J. (2006) Genetic variation in ABCB1 influences paclitaxel pharmacokinetics in Japanese patients with ovarian cancer. Int. J. Gynecol. Cancer 16, 979-985. https://doi.org/10.1111/j.1525-1438.2006.00593.x
  17. Knaus, W. A., Harrell, F. E., Fisher, C. J., Jr., Wagner, D. P., Opal, S. M., Sadoff, J. C., Draper, E. A., Walawander, C. A., Conboy, K. and Grasela, T. H. (1993) The clinical evaluation of new drugs for sepsis. A prospective study design based on survival analysis. JAMA 270, 1233-1241. https://doi.org/10.1001/jama.270.10.1233
  18. Heagerty, P. J., Lumley, T. and Pepe, M. S. (2000) Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 56, 337-344. https://doi.org/10.1111/j.0006-341X.2000.00337.x
  19. Zaman, G. J., Flens, M. J., van Leusden, M. R., de Haas, M., Mulder, H. S., Lankelma, J., Pinedo, H. M., Scheper, R. J., Baas, F., Broxterman, H. J. and Borst, P. (1994) The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proc. Natl. Acad. Sci. U.S.A. 91, 8822-8826. https://doi.org/10.1073/pnas.91.19.8822
  20. Wagner, P., Wang, B., Clark, E., Lee, H., Rouzier, R. and Pusztai, L. (2005) Microtubule Associated Protein (MAP)-Tau: a novel mediator of paclitaxel sensitivity in vitro and in vivo. Cell Cycle 4, 1149-1152. https://doi.org/10.4161/cc.4.9.2038
  21. Bai, G., Liu, Y., Zhang, H., Su, D., Tao, D., Yang, Y., Ma, Y. and Zhang, S. (2010) Promoter demethylation mediates the expression of ZNF645, a novel cancer/testis gene. BMB Rep. 43, 400-406 https://doi.org/10.5483/BMBRep.2010.43.6.400
  22. Tregouet, D. A., Konig, I. R., Erdmann, J., Munteanu, A., Braund, P. S., Hall, A. S., Grosshennig, A., Linsel-Nitschke, P., Perret, C., DeSuremain, M., Meitinger, T., Wright, B. J., Preuss, M., Balmforth, A. J., Ball, S. G., Meisinger, C., Germain, C., Evans, A., Arveiler, D., Luc, G., Ruidavets, J. B., Morrison, C., van der Harst, P., Schreiber, S., Neureuther, K., Schafer, A., Bugert, P., El Mokhtari, N. E., Schrezenmeir, J., Stark, K., Rubin, D., Wichmann, H. E., Hengstenberg, C., Ouwehand, W., Ziegler, A., Tiret, L., Thompson, J. R., Cambien, F., Schunkert, H. and Samani, N. J. (2009) Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat. Genet. 41, 283-285. https://doi.org/10.1038/ng.314

Cited by

  1. Prediction of individual response to anticancer therapy: historical and future perspectives vol.72, pp.4, 2015, https://doi.org/10.1007/s00018-014-1772-3
  2. Prioritization of SNPs for genome-wide association studies using an interaction model of genetic variation, gene expression, and trait variation vol.33, pp.4, 2012, https://doi.org/10.1007/s10059-012-2264-7