DOI QR코드

DOI QR Code

The Roles of Protein Degradation During Fungal-plant Interactions

단백질 분해가 식물의 진균 병 진전에 미치는 영향

  • Ahn, Il-Pyung (Bio-crops development Div., Dept. Agricultural Biotech., Nat'l. Acad. Agricultural Science, Rural Development Administration) ;
  • Park, Sang-Ryeol (Bio-crops development Div., Dept. Agricultural Biotech., Nat'l. Acad. Agricultural Science, Rural Development Administration) ;
  • Bae, Shin-Chul (Bio-crops development Div., Dept. Agricultural Biotech., Nat'l. Acad. Agricultural Science, Rural Development Administration)
  • 안일평 (농촌진흥청 국립농업과학연구원 농업생명자원부 신작물개발과) ;
  • 박상렬 (농촌진흥청 국립농업과학연구원 농업생명자원부 신작물개발과) ;
  • 배신철 (농촌진흥청 국립농업과학연구원 농업생명자원부 신작물개발과)
  • Received : 2010.10.27
  • Accepted : 2010.12.10
  • Published : 2010.12.31

Abstract

Plant pathogenic fungi are the most diverse and drastic causal agents of crop diseases threatening stable food production all over the world. Plant have evolved efficient innate immune system to scout and counterattack fungal invasion and pathogenic fungi also developed virulence system to nullify plant resistance machinery or signaling pathways and to propagate and dominate within their niche. A growing body of evidences suggests that post translational modifications (PTMs) and selective/nonselective degradations of proteins involved in virulence expression of plant pathogenic fungi and plant defense machinery should play pivotal roles during the compatible and incompatible interactions. This review elucidates recent investigations about the effects of PTMs and protein degradations on host defense and fungal pathogens' invasions.

농업경영측면에서, 또 균학적생화학적 측면에서도 식물을 침해하는 진균들의 연구는 반드시 필요하며 병 발생이나 저항성 발현 기작 구명은 기주와 기생체에 대한 연구를 동시에 진행해야 정확히 파악할 수 있다. 현재 병원균이 생산하는 분비체상과 비병원성 인자에 대한 연구는 많은 경우 세균에서 수행되고 있으며 사상균 중 조균인 Phytophthora와 진균인 Cladosporium에서만 병원균의 effector 복합체와 기주의 저항성 기제 간 관계가 같이 진행되고 있을 뿐이다. 앞에서 살펴보았듯 진균-기주 체계에서 단백질 분해가 병원성 조절 및 침입에 관여한다고 정확히 알려진 것은 단지 수종에 불과하며 그 기작도 세포자가포식과 ubiquitin 부가반응에 제한되어 있다. Post translational modification과 단백질 분해기작이 대단히 다양하고 거의 모든 진핵생물 체계에서 관찰되고 있음을 고려할 때 단백질 분해 과정은 세균 뿐 아니라 진균에서도 병원성 발현과 저항성 조절에 참여하고 있을 것으로 생각되며 이에 대한 연구가 앞으로 계속 요구될 것이라 생각된다.

Keywords

References

  1. Abramovitch, R. B. and Martin, G. B. 2004. Strategies used by bacterial pathogens to suppress plant defenses. Current Opinion in Plant Biology 7:356-364. https://doi.org/10.1016/j.pbi.2004.05.002
  2. Armstrong, M. R., Whisson, S. C., Pritchard, L., Bos, J. I. B., Venter, E., Avrova, A. O., Rehmany, A. P., Böhme, U., Brooks, K., Cherevach, I., Hamlin, N., White, B., Fraser, A., Lord, A., Quail, M. A., Churcher, C., Hall, N., Berriman, M., Huang, S., Kamoun, S., Beynon, J. L. and Birch, P. R. J. 2005. An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proc. Natl. Acad. Sci. USA 102:7766-7771. https://doi.org/10.1073/pnas.0500113102
  3. Asakura, M., Ninomiya, S., Sugimoto, M., Oku, M., Yamashita, S.-i., Okuno, T., Sakai, Y. and Takano, Y. 2009. Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare. Plant Cell 21:1291-1304. https://doi.org/10.1105/tpc.108.060996
  4. Birch, P. R. J., Armstrong, M., Bos, J., Boevink, P., Gilroy, E. M., Taylor, R. M., Wawra, S., Pritchard, L., Conti, L., Ewan, R., Whisson, S. C., van West, P., Sadanandom, A. and Kamoun, S. 2009. Towards understanding the virulence functions of RXLR effectors of the oomycete plant pathogen Phytophthora infestans. J. Exp. Bot. 60:1133-1140. https://doi.org/10.1093/jxb/ern353
  5. Dangl, J. L. and Jones, J. D. 2001. Plant pathogens and integrated defence responses to infection. Nature 411:826-833. https://doi.org/10.1038/35081161
  6. Flor, H. H. 1955. Host-parasite interaction in flax rust - its genetics and other implications. Phytopathology 45:680-685.
  7. Flor, H. H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275-296. https://doi.org/10.1146/annurev.py.09.090171.001423
  8. Gonzalez-Lamothe, R., Tsitsigiannis, D. I., Ludwig, A. A., Panicot, M., Shirasu, K. and Jones, J. D. G. 2006. The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato. Plant Cell 18:1067-1083. https://doi.org/10.1105/tpc.106.040998
  9. Han, Y. K., Kim, M. D., Lee, S. H., Yun, S. H. and Lee, Y. W. 2007. A novel F-box protein involved in sexual development and pathogenesis in Gibberella zeae. Molecular Microbiology 63:768-779.
  10. Hatakeyama, S. and Nakayama, K.-i.I. 2003. U-box proteins as a new family of ubiquitin ligases. Biochemical and Biophysical Research Communications 302:635-645. https://doi.org/10.1016/S0006-291X(03)00245-6
  11. Jones, J. D. G. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329. https://doi.org/10.1038/nature05286
  12. Jonkers, W. and Rep, M. 2009. Lessons from fungal F-box proteins. Eukaryotic Cell 8:677-695. https://doi.org/10.1128/EC.00386-08
  13. Kershaw, M. J. and Talbot, N. J. 2009. Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc. Natl. Acad. Sci. USA 106:15967-15972. https://doi.org/10.1073/pnas.0901477106
  14. Krappmann, S., Jung, N., Medic, B., Busch, S., Prade, R. A. and Braus, G. H. 2006. The Aspergillus nidulans F-box protein GrrA links SCF activity to meiosis. Molecular Microbiology 61:76-88. https://doi.org/10.1111/j.1365-2958.2006.05215.x
  15. Liu, Y., Schiff, M., Czymmek, K., Tallóczy, Z., Levine, B. and Dinesh-Kumar, S. P. 2005. Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567-577. https://doi.org/10.1016/j.cell.2005.03.007
  16. Lu, J.-P., Liu, X.-H., Feng, X.-X., Min, H. and Lin, F.-C. 2009. An autophagy gene, MgATG5, is required for cell differentiation and pathogenesis in Magnaporthe oryzae. Current Genetics 55:461-473. https://doi.org/10.1007/s00294-009-0259-5
  17. Ntoukakis, V., Mucyn, T. S., Gimenez-Ibanez, S., Chapman, H. C., Gutierrez, J. R., Balmuth, A. L., Jones, A. M. E. and Rathjen, J. P. 2009. Host inhibition of a bacterial virulence effector triggers immunity to infection. Science 324:784-787. https://doi.org/10.1126/science.1169430
  18. Pajerowska-Mukhtar, K. and Dong, X. 2009. A kiss of deathproteasome-mediated membrane fusion and programmed cell death in plant defense against bacterial infection. Genes & Development 23:2449-2454. https://doi.org/10.1101/gad.1861609
  19. Purnapatre, K., Gray, M., Piccirillo, S. and Honigberg, S. M. 2005. Glucose Inhibits Meiotic DNA Replication through SCFGrr1p-Dependent Destruction of Ime2p Kinase. Mol. Cell. Biol. 25:440-450. https://doi.org/10.1128/MCB.25.1.440-450.2005
  20. Rosebrock, T. R., Zeng, L., Brady, J. J., Abramovitch, R. B., Xiao, F. and Martin, G. B. 2007. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 448:370-374. https://doi.org/10.1038/nature05966
  21. Shirsekar, G., Dai, L., Hu, Y., Wang, X., Zeng, L. and Wang, G. -L. 2010. Role of ubiquitination in plant innate immunity and pathogen virulence. J. Plant Biol. 53:10-18. https://doi.org/10.1007/s12374-009-9087-x
  22. Sweigard, J. A., Carroll, A. M., Farrall, L., Chumley, F. G. and Valent, B. 1998. Magnaporthe grisea pathogenicity genes obtainedthrough insertional mutagenesis. Mol. Plant-Microbe Interact. 11:404-412. https://doi.org/10.1094/MPMI.1998.11.5.404
  23. Veneault-Fourrey, C., Barooah, M., Egan, M., Wakley, G. and Talbot, N. J. 2006. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312:580-583. https://doi.org/10.1126/science.1124550
  24. Wilson, R. A. and Talbot, N. J. 2009. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat. Rev. Micro. 7:185-195. https://doi.org/10.1038/nrmicro2032
  25. Zeng, L.-R., Park, C. H., Venu, R. C., Gough, J. and Wang, G.-L. 2008. Classification, expression pattern, and E3 ligase activity assay of rice U-box-containing proteins. Molecular Plant 1:800-815. https://doi.org/10.1093/mp/ssn044