DOI QR코드

DOI QR Code

Fast Text Line Segmentation Model Based on DCT for Color Image

컬러 영상 위에서 DCT 기반의 빠른 문자 열 구간 분리 모델

  • 신현경 (경원대학교 수학정보학과)
  • Received : 2010.06.21
  • Accepted : 2010.08.06
  • Published : 2010.12.31

Abstract

We presented a very fast and robust method of text line segmentation based on the DCT blocks of color image without decompression and binary transformation processes. Using DC and another three primary AC coefficients from block DCT we created a gray-scale image having reduced size by 8x8. In order to detect and locate white strips between text lines we analyzed horizontal and vertical projection profiles of the image and we applied a direct markov model to recover the missing white strips by estimating hidden periodicity. We presented performance results. The results showed that our method was 40 - 100 times faster than traditional method.

본 논문에서는 DCT 데이터에서 영상 데이터로의 해독 및 이진화 과정을 생략하고 컬러 영상의 DCT 관련 원자료를 사용하는 방법에 기반을 둔 매우 빠르고 안정적인 문자열 구간 분리 모형을 제안하였다. DCT 블록에 저장된 DC 및 3개의 주요 AC 변수들을 조합하여 축소된 저해상도 회색 영상을 만들고 횡렬 및 종렬 투영법을 통해 얻어진 픽셀 값의 히스토그램을 분석하여 문자 열 구간 사이에 존재하는 백색의 띠 공간을 찾아내었다. 이 과정 중 탐색되지 않은 문자 열 구간은 마코프 모델을 사용하여 숨겨진 주기를 찾아내어 복원하였다. 본 논문에 실험 결과를 제시하였으며 기존의 방법보다 약 40 - 100배 빠른 방법임을 입증하였다.

Keywords

References

  1. L.L. Sulem, A. Zahour, B. Taconet, “Text Line Segmentation of Historical Documents: a Survey”, IJDAR 2007. https://doi.org/10.1007/s10032-006-0023-z
  2. Managing Gigabytes
  3. Ha, J., Haralick, R. and Phillips, I., “Recursive X-Y Cut Using Bounding Boxes of Connected Components”, Proc. Third Int’l Conf. Document Analysis and Recognition, pp.952-955, 1995. https://doi.org/10.1109/ICDAR.1995.602059
  4. A. Zahour, B. Taconet, P. Mercy, and S. Ramdane, “Arabic hand-written text-line extraction”, ICDAR 2001. https://doi.org/10.1109/ICDAR.2001.953799
  5. R. Ryue, J. Song, M. Cai, “A Comprehensive Method for Multilingual Video Text Detection, Localization, and Extraction”, IEEE Trans. CSVT, 2005. https://doi.org/10.1109/TCSVT.2004.841653
  6. R. Manmatha, N. Srimal, “Scale space technique for word segmentation in handwritten manuscripts”, PAMI, 2005. https://doi.org/10.1109/TPAMI.2005.150
  7. Shi, Z., Venu Govindaraju, “Line separation for complex document images using fuzzy runlength”, Proceedings. First International Workshop, 2004. https://doi.org/10.1109/DIAL.2004.1263259
  8. M. Feldback, K.D. Tonnies, “Line Detection and Segmentation in Historical Church Registers”, ICDAR, 2001. https://doi.org/10.1109/ICDAR.2001.953888
  9. Y. Zhong, K. Karu, A.J. Jain, “Locating Text in Complex Color Images”, PR, 1995. https://doi.org/10.1109/ICDAR.1995.598963
  10. Y. Li, Y. Zheng, D. Doermann, “Script-independent Text Line Segmentation in Freestyle Handwritten Documents”, IEEE Trans. PAMI., 2008. https://doi.org/10.1109/TPAMI.2007.70792
  11. E. Oztop et al, “Repulsive attractive network for baseline extraction on document Images”, IEEE Signal proceesing. 1997. https://doi.org/10.1109/ICASSP.1997.595468
  12. F. Yin, C. Liu, “Handwritten Chinese text line segmentation by clustering with distance metric learning”, PR, 2009.
  13. Tseng, Lee, “Recognition based handwritten Chinese character segmentation using a probabilistic Viterbi algorithm”, PR Letter, 1999.
  14. C. Jung, Q. Liu, J. Kim, “A new approach for text segmentation using a stroke filter”, Signal Processing, 2008.
  15. Q. Ye, Q. Huang, W. Gao, D. Zhao, “Fast and robust detection in images and video frames”, Image and Vision Computing, 2005.