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Abstract 

Standard dimensionless parameters cannot simultaneously represent all operation modes of a pump-turbine. They 
either have singularities at E=0 and multiple values in the ‘unstable’ areas, or else get singular at n=0. P. Suter (1966) 
introduced an alternative set of variables which avoids singularity and always remains unique-valued. This works for 
non-regulated pumps but not so well for regulated machines. A modification by C.S. Martin avoids distortion at low load. 
The present paper describes further improvements for the representation of torque, and for closed gate (where Suter’s 
concept does not work). The possibility to interpolate across all operation modes is likewise useful for representing other 
mechanical parameters of the machine. Practical application for guide vane torque and pressure pulsation data is 
demonstrated by examples. 
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1. Standard 4-quadrant characteristics 
The operating characteristics of a turbo-machine are usually described by a set of dimensionless parameters; this implies 

dividing some physical variables by others, in order to make the dimensions cancel out [5]. Most frequently, the ‘reference’ 
parameters are either energy E (operating head H) or speed n (velocity of rotation).   

Examples are:    nED (or Ku, or n11, or …) = c1⋅D⋅n⋅E-0.5 …………………………………………………...  (1a)  

or   EnD (or ψ … )  = c2⋅D-2⋅E⋅n-2  …………………………………………………………...  (1b) 

or  QnD (or ϕ … ) = c3⋅D-3⋅Q⋅n-3    etc.  …………………………………………………….  (1c) 

Unfortunately there is not a single operational variable (E, n, Q, α … ) which would never attain a zero value, hence every  
one of the usual parameters becomes singular (zero or infinite) at least in some condition. Especially the infinite (asymptotic) 
conditions are causing troubles, inhibiting interpolation in their vicinity. For example, the most popular kind of discharge 
characteristic Q11 = f(α, n11), or Kcm = f(α, Ku), has asymptotic behavior where E becomes zero, see Fig. 1 (a). Even if E does 
never become zero in most applications, the division by sqrt(E) is a source of serious distortion in the characteristics. 

1.1 Parameters based on E 

The discharge characteristics of a pump-turbine is usually given as a set of curves QED = f(nED), each of the curves representing 
a constant value of guide vane opening. A typical curve is shown in Fig. 1 (a). In the figure, each of the 2 variables is already 
expressed in relation to a reference value, that way avoiding the choice between the many possible combinations of reference 
diameters and other definitions. The various modes of operation may be recognized from the letters A through J explained in the 
legend. In steady-state operation, the machine can only operate near point B (pump mode) or F (generating mode). The two 
asymptotes A and J are normally not surpassed but quite often give rise to inadequate extrapolation results.  

Another shortcoming of this representation is demonstrated by a detail view in Fig. 1 (b). In this part of the characteristic, 
which is usually referred to as the ‘S region’, for a given value of the speed/head variable n ED, indicated by the dashed line, there 
are 3 different values of the discharge factor QED. This requires special arrangements when this kind of representation is used. If, 
for example, one wants to simulate the so-called runaway case following a pump trip, the transient operating point would start 
close to point B and follow the curve until some point slightly below runaway (G), and afterwards oscillate around point G, thus 
remaining in the multiple-valued zone.  
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Fig. 1  (a)  Example of a 4-quadrant diagram using sqrt(E) as reference              (b) Multiple values 
 

1.2 Parameters based on n 
The other way of representation, quite often used for pump applications, is shown in Fig. 2. Note that the independent variable 

has changed from head/speed input (Fig. 1) to discharge input (discharge coefficient ϕ). This version therefore avoids the 
ambiguity addressed in Fig. 1 (b). In exchange, we now face an even more annoying problem. Using this definition, the pump 
runaway transient starting near B, and proceeding through points C and D now passes through infinity, because the speed n which 
serves as a reference has to pass through zero as the sense of rotation changes from pump to turbine.    
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Fig. 2 Same characteristics as Fig. 1, using speed n as reference  
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2. Suter’s artifice 
The above-described dilemma may be avoided by selecting a more suitable reference variable. Such a definition has been 

invented by P. Suter [1] for water hammer computations with non-regulated pumps. Suter’s idea starts from the ψ(ϕ) 
representation of pump head and replaces the square of speed denominator n2  by a sort of mixed velocity (n2 + Q2) which never 
becomes zero, because at least one of the variables n and Q is always different from zero. Thus, based on ψ a new variable for 
head is obtained which is proportional to H/(n2 + Q2). This new variable may become zero together with the head H, but it always 
remains finite.1  

Suter then introduced a second artifice in order to obtain also a better way to represent the discharge Q. He took account of the 
fact that, in the 4-quadrant diagram Q11(n11), or Kcm(Ku), the discharge coefficient ϕ is basically the tangent of the radius 
connecting (0,0) to the operation point (Ku, Kcm), the ratio Kcm/Ku being equal to ϕ, hence arctan (ϕ) = arctan (Kcm/Ku) is a 
suitable measure for discharge because even at the asymptote H=0 where Kcm and Ku become infinite, it has a finite value. 

The runner torque variable T, formerly represented by M11 or λ, was treated in a manner similar to the head H, thus the torque 
vs. discharge characteristics also became well-behaved for both n=0 and H=0. 

To eliminate the problem of different dimensions of H, n, Q, T, the original transform already replaced them by ‘per unit’ 
variables H/Href, Q/Qref, etc., proposing the optimum point for reference. 

His set of variable thus became 

Θ = arc.tan (ϕ/ϕopt) for discharge,  ……………………………………………………………………. (2a) 

(H/Hopt)/((n/nopt)2 + (Q/Qopt)2) for head, and    ………………………………………………………. (2b) 

(T/Topt)/((n/nopt)2 + (Q/Qopt)2) for torque.      …………………………………………………..…… (2c) 
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Fig. 3 Suter’s version of the 4-quadrant curve shown in Fig. 1 and Fig. 2 

So far the concept of Paul Suter at Sulzer Brothers, as published in 1966. For ordinary (single-regulated) pump turbines, this 
concept requires some adaptation. Unwelcome distortions of the Suter curves result from the fact that the discharge Q - which is 
used in the reference velocity (n2 + Q2) - is subject to considerable variation caused by the guide vane opening α. Suter already 
tried to improve this and replaced his variables by their square roots, … 

WH = sign(H) ⋅sqrt((H/Hopt)/((n/nopt)2 + (Q/Qopt)2)) ……………………………………………………. (3a) 

for head, and 

WM = sign(T) ⋅sqrt((T/Topt)/((n/nopt)2 + (Q/Qopt)2)) for torque.  ………………………………………. (3b) 

Fig. 3 is the way the discharge/head characteristics from Fig. 1 and Fig. 2 looks when expressed in terms of Suter’s variables. 
In this representation, all conditions of operation are represented within a single continuous curve. The necessity to work with 
separate diagrams for different modes is eliminated. Interpolation is enabled in every point of operation, and no singularities are 
causing troubles. Some modifications are however possible, and even necessary, to adapt the method for application with 
regulated machines. To make the following explanations more transparent, a ‘lean’ version of the set of 4-quadrant curves for a 
pump-turbine model with rather high specific speed will be used.  

                                                           
1 E and H are equivalent because E = g⋅H. 
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3. First improvements 

3.1 Definition of the reference discharge 

Suter’s paper deals with a non-regulated pump. Some authors dealing with single-regulated pump turbines apply a single 
constant reference discharge Qref for all characteristic curves, i.e. for all values of guide vane opening. This is not a lucky choice 
because in case of small guide vane opening, the influence of Kcm is virtually lost, resulting in seriously distorted Suter curves, as 
shown in the Figure 4 for our pump-turbine example.  
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 Fig. 4 Suter curves using a constant reference discharge Kcm 

It becomes quite obvious from Fig. 4 to use a smaller Kcm reference for the small guide vane openings. The question remains, 
which possibility is the most suitable one. Martin 1982 [2] already reported a practical solution scaling the relative discharge by 
dividing it through a relative guide vane opening. A similar concept will be introduced in chapter 4.5. 

 

3.2 Definition of the dependent variables WH and WM   

The square root has been introduced in order to reduce the magnitude of variation of the head and torque variables. This 
definition however has some disadvantage. If the zero crossing of the H(Q) curve at approximately constant speed is not singular, 
then the zero crossing of the WH(Θ) curve has infinite slope, which is not suitable for interpolation (see Fig.  for example). If the 
square root according to Eq. (3a) and (3b) is dropped in favor of Eq. (2b) and (2c), then the finite slope of the curves at H=0 is 
preserved and it is possible to use the curves through the zero crossing and into the range of negative head. In the present paper, 
we will use this revised definition and nevertheless refer to ‘Suter curves’. 

4.  The ‘modified Suter’ transform with additional improvements 
4.1 Compensation of wicket gate leakage 

Due to leakage through unavoidable gaps – which are not to scale anyway, the cuts Kcm(α) at constant Ku do not pass through 
(0,0). But for methodical reasons, it is desirable to produce a characteristic which fulfils such a condition. This will be achieved by 
slightly changing the numerical values of the guide vane opening (replacing  by α’=α+Δα) in such a way that the functions 
Kcm(α’) may be approximated near (0,0) by a power of α’. This correction will affect only quite small values of α; it comes into 
play for instance when α=0.3° is measured. In our example, the correction for the smallest tested guide vane angle α=0. 3° is 
Δα=0.27° (i.e., α’=0. 57°).  Guide vane angles of 2° and larger need no correction at all.  

In our example the α correction resulting for KM* at Ku=0 would only be about Δα=0.13°, or only half of the deviation 
resulting for Kcm*.  However, due to its use for water hammer computation, the proper modeling of Kcm* has higher priority, and 
the same correction may be used for both variables. 
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 (a) Verification of power law               (b) Correction for leakage     

 

Fig. 5 Guide vane opening influence 

4.2 Determine the braking torque in pumping and turbine sense 

The torque coefficients for closed wicket gate and zero flow provide the parameter of the braking parabolas 

λ0 = KM(α’→0)/Ku2  ……………………………………………………………………………….. (4) 

for both senses of rotation (λ0,P for Ku<0, and λ0,T for Ku > 0). In our example, the following values apply:   

Pumping sense: λ0,P = - 0.020  Turbine rotation: λ0,T = 0.026 

4.3 Subtract braking torque from measured values of torque  

KM’=KM - λ0,P ⋅ Ku2 for Ku<0 …………………………………………………………………….. (5a)   

KM’=KM - λ0,T ⋅ Ku2 for Ku>0 …………………………………………………………………….. (5b) 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 6 Normalized torque curves with the shutoff torque subtracted 

This modification is indispensable or otherwise the scaling of the torque for opening influence is not possible. The reason is 
that the braking torque parabola would create huge distortions increasing with the square of X1 if not compensated. The correction 
expressed by equ. (5a)/(5b) permits us to handle the torque variable in exactly the same way as the discharge. 
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4.4 Determine the reference values for Kcm, Ku, KM’, α’ 

As the transform is used in both modes of operation (pump and turbine), it is proposed to use the following reference values. 

Kuref = sqrt(-Kuopt,P ⋅ Kuopt,T)  ……………………………………………………………………..   (6a) 

Kcmref = sqrt(-Kcm opt,P ⋅ Kcm opt,T)  ……………………………………………………………………..   (6b) 

KM’ref = sqrt(KM’opt,P ⋅ KMopt’,T)  ……………………………………………………………………..   (6c) 

α’ref = sqrt(α’opt,P ⋅ α’opt,T)   ……………………………………………………………………..   (6d) 

Somewhat deviating definitions however will not inhibit the successful application.  

4.5 Scale the characteristic curves (or the test points) for effect of opening α’ 

The purpose is to obtain more or less identical curves Kcm*(Ku*), as well as KM*(Ku*) for every value of the opening argument 
α’. The optimum points will be near (-1,-1) for pump mode, and near (1,1) for turbine mode. The correction implies some 
analytical assumption about the influence of α’.  Some obvious possibilities would be 

Kcm’(α’) ∼ α’    ……………………………………………………………………..   (7a) 

Kcm’(α’) ∼ sin(α’)   ……………………………………………………………………..   (7b) 

Kcm’(α’) ∼ (α’)x   with  0 < x < 1 ……………………………………………………………………..   (7c) 

Evaluation of experimental data (see Fig. 5 (a)) shows that, for pump-turbines,  the latter formula with x ≅ 2/3 is a reasonable 
approximation for Kcm as well as KM’. Accordingly, we obtain: 

X1 = Ku* = Ku/Kuref            ( =  n11/n11ref  =  nED/nEDref  )   ……………………………..   (8a) 

Y1 = Kcm* = (Kcm/Kcm ref )/ (α’/α’ ref)2/3   …….. …………………………………………………………..   (8b) 

Z1 = KM* = KM’/KM’ref / (α’/α’ ref)2/3   ……..……………….……………………………………………..   (8c) 

After this scaling procedure, the torque diagram (Fig. 6) looks quite similar to the discharge diagram because the distorting effect 
of the shutoff torque has been removed.   

4.6 Execute the ‚modified Suter’ transform 

Compute the ‚discharge’ variable X2 = arctan (Ku*/ Kcm*) / π  = arctan (X1/ Y1) / π  …….………. ………..   (9a) 

Compute the ‚head’ variable  Y2 = 1 / (Ku*2 + Kcm*2) = 1 / (X12 + Y12)  ………….……………………..   (9b) 
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Fig. 7 ‘Modified Suter’ representation of the head vs. discharge relationship 
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Compute the ‚torque’ variable Z2 = Y2⋅KM*  = Y2⋅Z1  = Z1 / (X12 + Y12)    ………….………………..   (9c) 

The representation Y2=f(X2) (Fig. 7) may be called a ‚head diagram’, while a similar second representation Z2=g(X2) is a 
‚torque diagram’, see Fig. 8. Like in Fig. 7, the runaway condition in the torque diagram is also not located at Z2=0 because the 
torque has been corrected by the brake torque. 
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Fig. 8 ‘Modified Suter’ representation of the torque vs. discharge relationship 

Note that, in the Suter-like characteristic, the argument is a discharge. For α’ → 0 this representation becomes meaningless. In 
the limit case of closed wicket gate, for physical reasons (causality) a head input is required instead of the discharge input. For 
very small α’ values (say, α’<0.5°), the Suter model must therefore be replaced by an ‚orifice’ model with head input and flow 
output, as explained in Chapter 5. 

5. Handling the closed guide vane condition 
In case of closed guide vanes, the modified Suter representation cannot be used (the original Suter transform also becomes 

useless). The structure of the Suter model does not work in this case because it is based on flow input and head output. However, 
with closed guide vanes, the flow is always zero while the head is defined by the environment and not by the hydraulic machine. 
In other words, close to zero opening the only reasonable kind of model structure is with head input and flow output. 

 The 4 quadrants of  the  orifice model may be expressed as follows (for definition of the * variables see Chapter 4.4): 

Pump quadrant   Kcm* = c1⋅sqrt((c2(α’) ⋅Ku*)2 – 1)  ………….…………………………….   (10a) 

Pump brake quadrant:   Kcm* = c3⋅sqrt(1 - (c2(α’) ⋅Ku*)2 )  ………….…………………………….   (10b) 

Turbine quadrant:    Kcm* = c3⋅sqrt(1 - (c4(α’) ⋅Ku*)2 )  ………….…………………………….   (10c)  

Reverse pump quadrant:   Kcm* = c5⋅sqrt((c4(α’) ⋅Ku*)2 – 1)  ………….…………………………….   (10d) 

The functions c2(α’) and c4(α’) may be linearized for the small α values in question. The values (1/c2)  and (1/c4)  are equal 
to the Ku* values where Kcm* becomes zero in the case of rotation in pump and turbine sense, respectively.  

The simple analytical structure of the orifice model permits computation of a Suter curve Y2=f(X2, α’=0). If it is necessary to 
switch between the 2 models (Suter and orifice) e.g. for water hammer simulation, then a synthetical Suter curve  from the above 
equations can be inserted as lower α’ margin of the Suter model, thus providing a bumpless transition between the 2 models. 

A comparison between the measured and the analytical (orifice-type) flow curves for a very small guide vane opening is 
shown in  Fig. 9. It is not necessary to handle the torque in the same way because anyway KM converges towards the braking 
parabolas for  α’ → 0. 
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Fig. 9 Head diagram for very small guide vane opening (α=0.3°) 

6. New applications of the improved method  

The author’s company has used the modified Suter transform since many years for handling and transforming the 
characteristics of all kinds of hydraulic reaction machines - pump-turbines, Francis and even Kaplan turbines. It allows a very 
good way to model the so-called ‚unstable ranges’ of pump turbines, which may cause difficulties in conventional representation. 
The benefits of the method may likewise be utilized for all kinds of dependencies where some variable is divided by H (or E) to 
render it dimensionless. Many examples for such parameters may be found in the IEC standard for model testing [6]. For a 
demonstration, we will discuss applications with steady-state guide vane torque (6.1) and with pressure pulsation amplitude (6.2).  

6.1 Guide vane torque 

Any dimensionless variable u = U/H is multiplied by Y2 ∼ H/(n2 + Q2), and represented as a function of the flow variable, in 
the manner  

Y2 ⋅ u  = f(X2,α) ……………………………………………………… ( 11 ) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Guide vane torque after Suter treatment (positive = closing) 

Figure 10 is an example for the steady-state guide vane torque of a pump-turbine with low specific speed, processed in this 
manner. A parameter proportional to TGD,E is used for u in this case. Note that in the turbine quadrant (0 < X2 < 0.5) the locus of 

turbine
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zero guide vane torque (bold black curve) would be expected to correspond to constant α values (red lines), however, this only 
holds in the range of well-developed turbine flow, and not in the turbine brake area – also not in pump brake (-0.5 < X2 < 0). 

Other variables like intermediate pressure (between guide vanes and runner), or axial force can be handled in the same way.  

6.2 Pressure pulsation 

Pressure pulsation amplitudes are often subject to guarantee. In case of transient operation, it is difficult to predict the 
maximum amplitude because it may depend on many parameters influencing the particular transient. It is possible to apply a 
transformation of the described kind and connect it to the results of hydraulic transient computations. In case of the amplitude, 
which by definition never becomes negative, it is convenient to apply a square root to the transformed variable because the 
amplitudes Δp in normal and transient operation may differ by more than an order of magnitude, and hence  

f(X2,α) = sqrt(Y2 ⋅ Δp/(ρE)) ……………………………………………………..  ( 12 ) 

is less variable and better suited for interpolation. For the low-head pump-turbine of Figures 1 through 9, this procedure has 
been used with the peak-peak pressure pulsation amplitude between guide vanes and runner taken for Δp, to create the pulsation 
diagram in Fig. 11.  

 

 
 

 

 

 

 

 
 

 

 
Fig. 11 Pressure pulsation between wicket gate and runner 

The dark blue areas are the areas of relatively smooth operation (pump at X2 ≅ -0.75, turbine at X2 ≅ 0.25, and there is also a 
‚pump optimum’ of the reverse pump near X2 = 0.55). Very large amplitudes typically occur in the pump brake quadrant (-0.5 < 
X2 < 0). 

6.3 Application connected with hydraulic transients analysis 

While genuine transient model test data are normally not available, data sets derived from steady-state 4-quadrant tests like the 
ones in Fig. 10 and Fig. 11 provide a possibility to estimate the behavior in transient operation. In the following example (Fig. 12), 
the transient of pump runaway mentioned in chapters 1.1 and 1.2 has been simulated using a standard water hammer program. The 
‘steady-state’ component, as well as the pulsation amplitude of the guide vane torque is then being interpolated in the two 
pertinent 2D arrays (one of them of the kind shown in chapter 6.1/ Fig. 10, and one of the kind explained in 6.2/ Fig. 11) for every 
time step. Then, using the momentary values of H and Y2, the reverse transform to equ. (11) and equ. (12) can be executed to 
obtain the absolute values of the GV torque average and fluctuation, as shown in Fig. 12. 

The upper part of Fig. 12 is concerned with the development of the hydraulic parameters of the pump-turbine. The letters B 
through G are used with the same meaning as in Fig. 1, they indicate at which time the particular corresponding conditions are 
attained. The discharge drops to zero (C) some 6.5 seconds after loss of power; the speed at that time is still 58% in pump sense. 
The sense of rotation changes at 15.7 s (E). Strong fluctuations of guide vane torque occur in the condition of pump brake (D), and 
even worse near runaway (zero torque condition G , occurring at 31.8 s for the first time). Around 23.8 s, at about 80% speed, is a 
very smooth point with the turbine approximately passing through its best efficiency point (F).   
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Fig. 12 Variation of guide vane torque for simulated runaway from pump operation 

7. Conclusion 
The methodical shortcomings of ordinary dimensionless parameters may be avoided using more suitable definitions. Suter’s 

artifice, originally defined for unregulated pumps, requires some modifications for single-regulated pump turbines. While the most 
urgent improvement concerning the representation of flow is already known since long time, other improvements concerning the 
representation of torque and the accuracy at small opening are possible. Applying the modified Suter concept for other parameters, 
like pressure pulsation or guide vane torque, is a practical way to link these parameters to the transient operating condition of a 
machine. 

Nomenclature 
 
A 
cm 
D 
E 
g 
H 
Ku 
Kcm 
KM 
n 
nED 
Q 

Cross section [m2] = D2π/4 
Meridional velocity [m/s] = Q/A 
Impeller diameter [m] 
Energy [J/kg] 
Gravity [m/s2] 
Head [m] = E/g 
Speed factor = u/sqrt(2E) 
Flow factor = cm/sqrt(2E) 
Torque factor = 8T/(πρED3) 
Runner speed [s-1] 
IEC 60193 speed factor = nD/sqrt(E) 
Discharge [m3/s] 

T 
u 
 
α 
ψ 
ϕ 
Δp 
λ 
λ0 
ρ 
 
T, P 

Shaft torque [Nm] 
Circumferential velocity [m/s] = Dπn 
 
Guide vane opening angle [dg] 
Head coefficient = 1/Ku2 
Discharge coefficient = cm/u  
Pressure pulsation amplitude [Pa] 
Torque coefficient = KM/ Ku2 
Torque coefficient at zero opening 
Fluid density [kg/m3] 
 
Index for turbine, pump modes 
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