DOI QR코드

DOI QR Code

Isolation, Purification and Characterization of the β-Xylosidase from Klebsiella sp. Sc.

Klebsiella sp. Sc가 생산하는 β-xylosidase의 분리, 정제 및 특성

  • Lee, Yong-Seok (Department of Biotechnology, College of Natural Resources and Life Science, Dong-a University) ;
  • Park, In-Hye (Department of Biotechnology, College of Natural Resources and Life Science, Dong-a University) ;
  • Ahn, Soon-Cheol (Department of Microbiology and Immunlogy, Pusan National University school of Medicine) ;
  • Choi, Yong-Lark (Department of Biotechnology, College of Natural Resources and Life Science, Dong-a University)
  • Received : 2010.11.26
  • Accepted : 2010.12.08
  • Published : 2010.12.30

Abstract

A $\beta$-xylosidase encoding gene from Klebsiella sp. Sc was cloned in Escherichia coli. The $\beta$-xylosidase gene consisted of an open reading frame of 1,680 nucleotides and encodes 559 amino acids with a deduced molecular weight of 63 kDa. The deduced amino acid sequence of the $\beta$-xylosidase from Klebsiella sp. Sc exhibits 90% identities and 95% positives compared to those from Klebsiella oxytoca (KOX), Lactobacillus lactis (LAC, 82%, 90%), Bacillus longum (BLON, 69%, 81%) and Escherichia coli (ECOLI, 47%, 63%). The $\beta$-xylosidase was purified by GST-fusion purification system. The pH and temperature optima of the enzyme were 6.6 and $55^{\circ}C$, respectively. The $\beta$-xylosidase hydrolyzes xylobiose to xylose.

Klebsiella sp. Sc로부터 birchwood xylan을 분해하는 $\beta$-xylosidase를 분리하였다. 이 $\beta$-xylosidase는 63 kDa의 분자량을 가지는 559개의 아미노산을 암호화하며 1,680개의 뉴클레오타이드로 구성 되는 것으로 밝혀졌다. 기존에 밝혀진 세균성 $\beta$-xylosidase와 상동성을 비교해 보았을 때, Klebsiella oxytoca (KOX)와 90% identities와 95% positives를 나타내었으며 Lactobacillus lactis (LAC, 82%, 90%), Bacillus longum (BLON, 69%, 81%) 그리고 Escherichia coli (ECOLI, 47%, 63%)를 나타내었다. 분리된 $\beta$-xylosidase는 GST-fusion 정제 시스템을 이용하여 순수 정제하였다. 이 효소 활성의 최적 pH는 6.6이었으면 최적 온도는 $55^{\circ}C$였다. TLC를 통해 효소 분해 산물을 관찰한 결과, xylobiose를 분해하여 xylose를 생산하는 것을 관찰 할 수 있었다.

Keywords

References

  1. Biely, P. Microbial xylanolytic systems. 1985. Trends Biotechnol. 3, 286-290. https://doi.org/10.1016/0167-7799(85)90004-6
  2. Blattmer, F. R., G. Plunkett, C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J. Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau, and Y. Shao. 1997. The complete genome sequence of Escherichia coli K-12. Science 277, 1453-1462. https://doi.org/10.1126/science.277.5331.1453
  3. Bolotin, A., P. Wincker, S. Mauger, O. Jaillon, K. Malarme, J. Weissenbach, S. D. Ehrlich, and A. Sorokin. 2001. The complete genome sequence of the lactiv acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11, 731-753. https://doi.org/10.1101/gr.GR-1697R
  4. Bourne, Y. and B. Henrissat. 2001. Glycoside hydrolases and glycosyltransferase: families and functional modules. Curr. Opin. Struct. Biol. 11, 593-600. https://doi.org/10.1016/S0959-440X(00)00253-0
  5. Eriksson, K. E., R. A. Blanchette, and P. Ander. 1990. Microbial and enzymatic degradation of wood and wood components. Springer-Verlag, Berlin.
  6. Henrissat, B. and A. Bairoch. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 193, 781-788.
  7. Henrissat, B. and A. Bairoch. 1996. Updating the sequence-based classification of glycoside hydrolases. Biochem. J. 316, 695-696.
  8. Henrissat, B. and G. Davies. 1997. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7, 637-644. https://doi.org/10.1016/S0959-440X(97)80072-3
  9. Herrmann, M. C., M. Vrsanka, M. Jurickova, J. Hirsch, and C. P. Kubicek. 1997. Biochem. J. 321, 375-381.
  10. Qian, Y., L. P. Yomano, J. F. Preston, H. C. Aldrich, and L. O. Ingram. 2003. Cloning, characterization, and Functional expression of the Klebsiella oxytoca xylodextrin utilizaton operon (xynTB) in Escherichia coli. Appl. Environ. Microbiol. 69, 5957-5967. https://doi.org/10.1128/AEM.69.10.5957-5967.2003
  11. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  12. La Grange, D. C., I. S. Pretorius, and Y. H. van Zyl. 1997. Cloning of the Bacillus pumilus $\beta$-xylosidase gene (xynB) and its expression in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 47, 262-266. https://doi.org/10.1007/s002530050924
  13. Lee, Y. S., I. H. Park, Y. Zhou, K. K. Kim, S. L. Choi, and Y. L. Choi. 2008. Isolation of bacteria producing cell wall degrading enzyme and chracterizatin of CMCase. J. Life Sci. 18, 639-645. https://doi.org/10.5352/JLS.2008.18.5.639
  14. Miller, L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 208-218.
  15. Polizeli, M. L. T. M., A. C. S. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanase from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577-591. https://doi.org/10.1007/s00253-005-1904-7
  16. Tuncer, M. 2000. Characterization of $\beta$-xylosidase and $\alpha$- L-arabinofuranosidase activities from Thermomonospora fusca BD25. Turk. J. Biol. 24, 753-767.
  17. Wong, K. K. Y., L. U. L. Tan, and J. N. Saddler. 1988. Multiplicity of $\beta$-1,4-xylanase in microorganisms: functions and applications. Microbiol. Rev. 52, 305-317.

Cited by

  1. Effects of Dietary Fermented Flammulina velutipes Mycelium on Performance and Egg Quality in Laying Hens vol.13, pp.11, 2014, https://doi.org/10.3923/ijps.2014.637.644