DOI QR코드

DOI QR Code

Phylogenetic Relationships and Genetic Diversity in Collected Resources of Carthamus tinctorius by Random Amplified Polymorphic DNA Markers

RAPD 마커에 의한 수집된 홍화자원에서 계통관계와 유전적 다양성

  • 성정숙 (농촌진흥청 농업유전자원센터) ;
  • 조규택 (농촌진흥청 농업유전자원센터) ;
  • 이기안 (농촌진흥청 농업유전자원센터) ;
  • 백형진 (농촌진흥청 농업유전자원센터) ;
  • 허만규 (동의대학교 분자생물학과)
  • Received : 2010.09.19
  • Accepted : 2010.11.19
  • Published : 2010.12.30

Abstract

Carthamus tinctorius L. (Compositae) is an herb primarily distributed throughout in the world. The species is regarded as ecologically important in the world. Safflower was used for medicines, as well as making red (carthamin) and yellow dyes. We have used the RAPD technique to investigate the phylogenetic relationships and genetic diversity of C. tinctorius. We obtained 123 bands from all the 26 cultivars. The average number of bands was 9.5 per primer. The genetic diversity of safflower is found among cultivars and there is a high among-cultivar differentiation. The OPC18-01 band is the specific marker for Syria cultivar, whereas no products were detected in individuals from other country cultivars. We found seven phenetic bands for determining the specific marker of cultivars with SCAR markers. Though the number of individuals sampled for analysis was small and probably not fully representative of the total available diversity in C. tinctorius, this study demonstrates that the regions (Morocco, Syria, and Turkey) of the Mediterranean Sea were more variable than other regions with the exception of India. In this result, although only simple result of RAPD is difficult to assert the center of species diversity of C. tinctorius, the regions of the Mediterranean Sea may be the most probable candidate for the origin of safflower. India was also the candidate of the center or secondary center of species diversity of C. tinctorius. RAPD markers were effective in classifying cultivar levels of safflower.

홍화(Carthamus tinctorius L.)는 세계 여러 나라에 분포하고 있는 초본류이다. 이 종은 경제적으로 중요한데 홍화는 약용, 적색소, 노랑 색소로 이용된다. RAPD 기법으로 홍화의 26 집단 간 유연관계와 유전적 다양성을 조사하였다. 모든 집단에서 123개 밴드를 얻었으며 시발체(primer) 당 평균 9.5개 밴드를 나타내었다. 홍화의 유전적 다양도는 집단 내에 대부분 귀속되며 높은 집단 간 분화를 나타내었다. OPC18-01 밴드는 시리아 그룹에 특이 밴드였으며 다른 나라 집단에서는 발견되지 않았다. 이런 7개 특이 마크(SCAR)를 발견하였다. 비록 홍화의 분석한 개체 수가 적고 각 나라의 대표성을 의미하지 않지만 본 연구 결과 지중해의 지역(모로코, 시리아, 터키)이 인도를 제외한 다른 지역보다 변이가 높았다. 단순히 RAPD만으로 단정하기 어렵지만 홍화의 기원 센터의 후보군으로 지중해 연안으로 추정된다. 인도 역시 홍화의 2차 센터의 후보군이다. RAPD 마커는 홍화의 자연 집단을 분류하는데 효과적이었다.

Keywords

References

  1. Baldwin, B. G. 1993. Molecular phylogenetics of Calcydenia (Compositae) based on ITS sequences of nuclear ribosomal DNA: chromosomal and morphological evolution reexamined. Am. J. Bot. 80, 222-238. https://doi.org/10.2307/2445043
  2. Chadwick, J. 1976. The Mycenaean World. pp. 120, Cambridge University Press, Cambridge.
  3. De Candolle, A. 1885. Origin of Cultivated Plants. Retrieved on 2007-09-25. pp.164, D. Appleton & Co, New York.
  4. DeClerck, F. A. J., M. G. Barrour, and J. O. Sawyer. 2006. Species richness and stand stability in conifer forests of the Sierra Nevada. Ecology 87, 2787-2799. https://doi.org/10.1890/0012-9658(2006)87[2787:SRASSI]2.0.CO;2
  5. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) Version 3.5s. Distributed by the Author. Department of Genetics, Univ. of Washington, Seattle.
  6. Gallego, F. J., M. A. Perez, Y. Nunez, and P. Hidalgo. 2005. Comparison of RAPDs, AFLPs and SSR markers for the genetic analysis of yeast strains of Saccharomy cescerevisiae. Food Microbiology 22, 561-568 https://doi.org/10.1016/j.fm.2004.11.019
  7. Hamrick, J. L. and M. J. W. Godt. 1989. Allozyme Diversity in Plant Species, pp. 304-319, In Brown, A. H. D., M. T. Clegg, A. L. Kahler, and B. S. Weir (eds.), Plant population genetics, breeding and genetic resources, Sinauer Associates, Sunderland, MA.
  8. Jung, G., P. W. Skroch, J. Nienhuis, D. P. Coyne, E. Arnaud-Santana, H. M. Ariyarathne, and J. M. Marita. 1999. Confirmation of QTL associated with common bacterial blight resistance in four different genetic backgrounds in common bean. Crop Sci. 39, 1448-1455. https://doi.org/10.2135/cropsci1999.3951448x
  9. Knowles, P. F. 1989. Safflower, pp. 363-374, In Roobbelen, G., R. K. Downey, and A. Ashri (eds.), Oil crops of the world, McGraw-Hill, New York.
  10. Lubberstedt, T., A. E. Melchinger, C. Duble, M. Vuylsteke, and M. Kuiper. 2000. Relationships among early Europe maize inbreds: IV. Genetic diversity revealed with AFLP markers and comparison with RFLP, RAPD, and pedigree data. Crop Sci. 40, 783-791. https://doi.org/10.2135/cropsci2000.403783x
  11. Lynch, M. and B. G. Milligan. 1994. Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3, 91-99. https://doi.org/10.1111/j.1365-294X.1994.tb00109.x
  12. Marshall, D. R. 1989. Limitations to the use of germplasm collections, pp. 105-120, In Brown, A. H. D., D. R. Marshall, and J. T. Williams (eds.), The use of plant genetic resources. Cambridge University Press, Cambridge.
  13. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA. 701, 3321-3323.
  14. Nei, M. 1977. F-statistics and analysis of gene diversity in subdivided populations. Ann. Human Genet. 41, 225-233. https://doi.org/10.1111/j.1469-1809.1977.tb01918.x
  15. Parks, J. C. and C. R. Werth. 1993. A study of spatial features of clones in a population of bracken fern, Pteridium aquilinum (Dennstaedtiaceae). Am. J. Bot. 80, 537-544. https://doi.org/10.2307/2445369
  16. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  17. Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395-420. https://doi.org/10.2307/2406450
  18. Yeh, F. C., R. C. Yang, and T. Boyle. 1999. POPGENE Version 1.31, Microsoft Windows-based Freeware for Population Genetic Analysis. University of Alberta, Alberta.
  19. Zohary, D. and M. Hopf. 2000. Domestication of Plants in the Old World. pp. 211, 3rd eds., Oxford University Press, New Headway

Cited by

  1. Mobile genomic element diversity in world collection of safflower (Carthamus tinctorius L.) panel using iPBS-retrotransposon markers vol.14, pp.2, 2019, https://doi.org/10.1371/journal.pone.0211985