DOI QR코드

DOI QR Code

Relationship between Cell Death and Oxidative Stress in the effect of benzene in Cultured Lung Epithelial Cells

폐 대식세포주에서 벤젠에 의한 세포 사멸 효과와 산화성 스트레스 관련성

  • Lim, Jae-Chung (Bio-therapy Human Resources Center, Animal Medical Center, Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University) ;
  • Kim, Jong-Choon (Bio-therapy Human Resources Center, Animal Medical Center, Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University) ;
  • Park, Soo-Hyun (Bio-therapy Human Resources Center, Animal Medical Center, Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University)
  • 임재청 (전남대학교 수의과대학 바이오치료 산업인력 양성팀, 동물의학 연구소) ;
  • 김종춘 (전남대학교 수의과대학 바이오치료 산업인력 양성팀, 동물의학 연구소) ;
  • 박수현 (전남대학교 수의과대학 바이오치료 산업인력 양성팀, 동물의학 연구소)
  • Received : 2010.11.28
  • Accepted : 2010.12.23
  • Published : 2010.12.30

Abstract

Benzene is one of volatile environmental pollutants to induce asthma and allergy in respiratory system. The airway epithelium is a physical barrier to inhaled toxicants and particulates. However, the effect of benzene in lung epithelial cell viability has not been elucidated. Thus, this study was conducted to investigate the effect of benzene on apoptosis in A549 cells, lung epithelial cell line. In this study, benzene decreased cell viability of A549 cells in a dose-dependent manner (> $10{\mu}M$). Benzene-induced decrease of cell viability was blocked by the treatment of antioxidants (vitamin C and NAC). Indeed, benzene induced lipid peroxide formation in A549 cells. Benzene decreased Bcl-2 expression but increased Bax expression in A549 cells. In addition, benzene also increased the cleaved form of caspase-3. In conclusion, benzene induced apoptosis via oxidative stress in cultured epithelial cells.

벤젠은 농약 노출 및 새집 증후군시에 나타나는 중요한 물질로 천식 및 알러지 등의 호흡 질환을 일으키는 물질로 알려져 있으나 폐 상피세포에 대한 자세한 효과는 알려져 있지 않고 있다. 본 실험에서는 폐 상피세포인 A549 세포를 이용하여 벤젠에 대한 효과를 알아보았다. 실험 결과 벤젠은 세포 생존율을 감소 시켰으며, 이러한 반응은 항산화제인 vitamin C 및 NAC 처리 시 차단되었다. 실제로 벤젠 처리시 산화성 스트레스 지표인 lipid peroxide 형성이 증가하였으며 이들 반응 역시 항산화제들에 의해 차단되었다. 한편 벤젠 처리시 세포 사멸 촉진 단백질인 Bax 발현은 증가하였으며 세포 사멸 억제 단백질인 Bcl-2의 발현은 억제 되었으며 세포 사멸 실행 단백질인 casapse-3의 활성형 역시 증가하였다. 결론적으로 벤젠은 폐 상피세포에서 산화성 스트레스 증가를 통해 세포 사멸을 일으키는 것으로 나타났다.

Keywords

References

  1. Badham, H.J., Winn, L.M., 2010. In utero and in vitro effects of benzene and its metabolites on erythroid differentiation and the role of reactive oxygen species, Toxicol. Appl. Pharmacol. 244(3), 273-279. https://doi.org/10.1016/j.taap.2010.01.002
  2. Barillet, S., Jugan, M.L., Laye, M., Leconte, Y., Herlin-Boime, N., Reynaud, C., Carriere, M., 2010. In vitro evaluation of SiC nanoparticles impact on A549 pulmonary cells: cyto-, genotoxicity and oxidative stress, Toxicol Lett. 198(3), 324-330. https://doi.org/10.1016/j.toxlet.2010.07.009
  3. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Cao, X., Bennett, R.L., May, W.S., 2008. c-Myc and caspase-2 are involved in activating Bax during cytotoxic drug-induced apoptosis, J. Biol. Chem. 283(21), 14490-14496. https://doi.org/10.1074/jbc.M801107200
  5. Das, A., Chakrabarty, S., Choudhury, D., Chakrabarti, G. 2010. 1,4-Benzoquinone (PBQ) induced toxicity in lung epithelial cells is mediated by the disruption of the microtubule network and activation of caspase-3, Chem. Res. Toxicol. 23(6), 1054-1066. https://doi.org/10.1021/tx1000442
  6. Du, A., Zhao, B., Yin, D., Zhang, S., Miao J., 2006. Safrole oxide induces apoptosis by activating caspase-3, -8, and -9 in A549 human lung cancer cells. Bioorg. Med. Chem Lett. 16(1), 81-83. https://doi.org/10.1016/j.bmcl.2005.09.050
  7. Giuliano, M., Stellavato, A., Cammarota, M., Lamberti, M., Miraglia, N., Sannolo, N., De Rosa, M., 2009. Effects of low concentrations of benzene on human lung cells in vitro, Toxicol. Lett. 188(2), 130-136. https://doi.org/10.1016/j.toxlet.2009.03.018
  8. Kamdar, O., Le, W., Zhang, J., Ghio, A.J., Rosen, G. D., Upadhyay, D., 2008. Air pollution induces enhanced mitochondrial oxidative stress in cystic fibrosis airway epithelium. FEBS Lett. 582, 3601-3606. https://doi.org/10.1016/j.febslet.2008.09.030
  9. Kampa, M, Castanas, E., 2008. Human health effects of air pollution, Environ Pollut. 151(2), 362-367. https://doi.org/10.1016/j.envpol.2007.06.012
  10. Kataoka, M., Wiehle, S., Spitz, F., Schumacher, G., Roth, J.A., Cristiano, R.J., 2000. Down-regulation of bcl-2 is associated with p16INK4-mediated apoptosis in non-small cell lung cancer cells, Oncogene. 19(12), 1589-1595. https://doi.org/10.1038/sj.onc.1203466
  11. Khalade, A., Jaakkola, M.S., Pukkala, E., Jaakkola, J.J., 2010. Exposure to benzene at work and the risk of leukemia: a systematic review and meta-analysis, Environ Health. 9:31. https://doi.org/10.1186/1476-069X-9-31
  12. Kitamura, Y., Hashimoto, S., Mizuta, N., Kobayashi, A., Kooguchi, K., Fujiwara, I. 2001. Fas/FasLdependent apoptosis of alveolar cells after lipopolysaccharide induced lung injury in mice, Am. J. Respir. Crit. Care Med. 163, 762-769. https://doi.org/10.1164/ajrccm.163.3.2003065
  13. Kutuk, O., Basaga, H., 2007. Apoptosis signalling by 4-hydroxynonenal: a role for JNK-c-Jun/AP-1 pathway. Redox Rep. 12(1), 30-34. https://doi.org/10.1179/135100007X162329
  14. Li, A.A., Maurissen, J.P., Barnett, J.F. Jr., Foss, J., Freshwater, L., Garman, R.H., Peachee, V.L., Hong, S.J., Stump, D.G., Bus, J.S., 2010. Oral gavage subchronic neurotoxicity and inhalation subchronic immunotoxicity studies of ethylbenzene in the rat, Neurotoxicology. 31(3), 247-258. https://doi.org/10.1016/j.neuro.2010.02.001
  15. Ohkawa, H., Ohishi, N., Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  16. Pariselli, F., Sacco, M.G., Rembges, D., 2009. An optimized method for in vitro exposure of human derived lung cells to volatile chemicals. Exp. Toxicol. Pathol. 61(1), 33-39. https://doi.org/10.1016/j.etp.2008.05.008
  17. Sharma, S., Rana, S.V., 2010. Melatonin inhibits benzeneinduced lipid peroxidation in rat liver, Arh. Hig. Rada. Toksikol. 61(1), 11-18.
  18. Shi, Y., Song, Y., Wang, Y., Wang, Y., Liang, X., Hu, Y., Yu, H., Guan, X., Cheng, J., Yang, K., 2010. beta-Benzene hexachloride induces apoptosis of rat sertoli cells through generation of reactive oxygen species and activation of JNKs and FasL, Environ Toxicol. (in press)
  19. Tong, Q.S., Zheng, L.D., Tang, S.T., Jiang, G.S., Ruan, Q.L., Zeng, F. Q., Dong, J.H., 2007. Nitrofen suppresses cell proliferation and promotes mitochondria-mediated apoptosis in type II pneumocytes. Acta. Pharmacol. Sin. 28(5), 672-684. https://doi.org/10.1111/j.1745-7254.2007.00552.x
  20. erma, Y., Rana, S.V., 2004. Sex differences in oxidative stress induced by benzene in rats, Indian J. Exp. Biol. 42(1), 117-120.
  21. VWeaver, C.V., Liu, SP., 2008. Differentially expressed pro- and anti-apoptogenic genes in response to benzene exposure: Immunohistochemical localization of p53, Bag, Bad, Bax, Bcl-2, and Bcl-w in lung epithelia, Exp. Toxicol. Pathol. 59(5), 265-272. https://doi.org/10.1016/j.etp.2007.02.012
  22. Wu, Y., Xing, D., Chen, W.R., Wang, X., 2007. Bid is not required for Bax translocation during UVinduced apoptosis, Cell Signal. 19(12), 2468-2478. https://doi.org/10.1016/j.cellsig.2007.07.024
  23. Yang, F., Zhou, J.H., 2010. Cytotoxicity and DNA damage induced by 1, 4-benzoquinone in v79 Chinese hamster lung cells, J. Toxicol. Environ. Health A. 73(7), 483-489. https://doi.org/10.1080/15287390903523402
  24. Zakeri, Z., Lockshin, R.A., 2008. Cell death: history and future. Adv. Exp. Med. Biol. 615, 1-11. https://doi.org/10.1007/978-1-4020-6554-5_1
  25. Zinkel, S., Gross, A., Yang, E., 2006. BCL2 family in DNA damage and cell cycle control, Cell Death Differ. 13(8), 1351-1359. https://doi.org/10.1038/sj.cdd.4401987