DOI QR코드

DOI QR Code

Effectiveness of Arbuscular Mycorrhizal Fungi (AMF) Inoculation on the Growth of Perilla

  • Wee, Chi-Do (Department of Agriucultural Chemistry, Sunchon National University) ;
  • Sohn, Bo-Kyoon (Department of Agriucultural Chemistry, Sunchon National University)
  • 투고 : 2010.11.08
  • 심사 : 2010.12.22
  • 발행 : 2010.12.30

초록

To evaluate the effectiveness of AMF on the growth of horticultural crops, we compared mycorrhizal and non-mycorrhizal plants, perilla (P. frutescens Britt.), that were inoculated with AMF propagules. In the early stages of growth of perilla, compared to the AMF- perilla seedlings, in AMF+ perilla seedlings at 3 weeks after sowing, leaf length and width increased 17% and 29%, leaf area increased 28%, and shoot fresh weight increased 33%, root total length increased 1%, and chlorophyll content increased 3%. Further at 10 weeks after sowing, compared to the AMF- perilla plants, in perilla plants inoculated with AMF at the sowing and transplanting stages, leaf area increased 21% and 19%, shoot length increased 19% and 17%, root fresh weight increased 17% and 20%, and chlorophyll content increased 5.1% and 4.8%, respectively. Moreover, at 14 weeks after sowing, compared to the AMFperilla plants, in perilla plants inoculated with AMF at the sowing and transplanting stages, the number of leaves increased 16% and 20%, root fresh weight increased 16% and 17% significantly. Further, leaf fresh weight increased 9% and 11%, shoot diameter increased 4.5% and 7.3%, and chlorophyll content increased 1.5% and 2.5%, respectively. The levels of many macronutrients and micronutrients were tended to be significantly higher in AMF+ plants than in AMF- plants, supporting the association between AMF and enhanced growth of plants grown from AMF+ seedlings.

키워드

참고문헌

  1. Abbott, L.K., Robson, A.D., 1984. The effect of VA mycorrhizae on plant growth. In: Powell, C.L., Bagyaraj, D.J. (Eds.), VA mycorrhiza. CRC Press, Boca Raton, pp. 113-130.
  2. Abdalla, M.E., Abdel-Fattah, G.M., 2000. Influence of the endomycorrhizal fungus Glomus mosseae on the development of peanut pod root disease in Egypt. Mycorrhiza 10, 29-35. https://doi.org/10.1007/s005720050284
  3. Amijee, F., Tinker, P.B., Stribley, D.P., 1989. The development of endomycorrhizal root systems. VII. A detailed study of effects of soil phosphorus on colonization. New Phytol. 111, 435-446. https://doi.org/10.1111/j.1469-8137.1989.tb00706.x
  4. n, Z.Q., Hendrix, J.W., Hershman, D.E., Henson, G.T., 1990. Evaluation of the most probable number (MPN) and wet-sieving methods for determining soil-borne populations of endogonaceous mycorrhizal fungi. Mycologia 82, 576-581. https://doi.org/10.2307/3760048
  5. A Arihara, J., Karasawa, T., 2000. Effect of previous crops on arbuscular mycorrhizal formation and growth of succeeding maize. Soil Sci. Plant Nutr. 46, 43-51. https://doi.org/10.1080/00380768.2000.10408760
  6. Baltruschat, H., Dehne, H.W., 1988. The occurrence of vesicular-arbuscular mycorrhiza in agro-ecosystems. I. Influence of nitrogen and green manure in continuous monoculture and in crop rotation on the inoculum potential of winter wheat. Plant and Soil. 107, 279-284. https://doi.org/10.1007/BF02370558
  7. Banno, N., Akihisa, T., Tokuda, H., Yasukawa, K., Higashihara, H., Ukiya, M., et al., 2004. Triterpene acids from the leaves of Perilla frutescens and their anti inflammatory and antitumor-promoting effects. Biosci. Biotechnol. Biochem. 68(1), 85-90. https://doi.org/10.1271/bbb.68.85
  8. Bouwmeester, H.J., Roux, C., Lopez-Raez, J.A., Becard, G., 2007. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci. 12, 224-230. https://doi.org/10.1016/j.tplants.2007.03.009
  9. Brundrett, M.C., Piche, Y., Peterson, R.L., 1984. A new method for observing the morphology vesiculararbuscular mycorrhizae. Can. J. Bot. 62, 2128-2134. https://doi.org/10.1139/b84-290
  10. Cho, E.J., Lee, D.J., Wee, C.D., Kim, H.L., Cheong, Y.H., Cho, J.S., Sohn, B.K., 2009. Effects of AMF inoculation on soil structure in mycorrhizosphere. Sci. Hort. 122, 633-183. https://doi.org/10.1016/j.scienta.2009.06.025
  11. Davies Jr., F.T., Potter, J.R., Linderman, R.G., 1993. Drought resistance of mycorrhizal pepper plants independent of leaf P concentration response in gas exchange and water relations. Physiol. Plant. 87, 45-53. https://doi.org/10.1111/j.1399-3054.1993.tb08789.x
  12. Fontenla, S., Garcia-Romera, I., and Ocampo, J.A., 1999. Negative influence of non-host plants on the colonization of Pisum sativum by the arbuscular mycorrhizal fungus Glomus mosseae. Soil Biol. Biochem. 31, 1591-1597. https://doi.org/10.1016/S0038-0717(99)00087-5
  13. Gavito, M.E., Miller, M.H., 1998. Early phosphorus nutrition, mycorrhizae development, dry matter partitioning and yield of maize. Plant and Soil. 199, 177-186. https://doi.org/10.1023/A:1004357322582
  14. Guo, R., Pittler, M. H., Ernst, E., 2007. Herbal medicines for the treatment of allergic rhinitis: A systematic review. Ann. Allergy Asthma Immunol. 99(6), 483-595. https://doi.org/10.1016/S1081-1206(10)60375-4
  15. Hamel, C., Dalpe, Y., Furlan, V., Parent, S., 1997. Indigenous populations of arbuscular mycorrhizal fungi and soil aggregate stability are major determinants of leek (Allium porrum L.) response to inoculation with Glomus intraradices Schenck and Smith or Glomus versiforme (Karsten) Berch. Mycorrhiza 7, 187-196. https://doi.org/10.1007/s005720050180
  16. Happer, C.M., 1983. The effect of nitrate and phosphate on the vesicular-arbuscular mycorrhizal infection of lettuce. New Phytol. 9, 389-399.
  17. Hayman, D.S., Johnson, A.M., Ruddlesdin, I., 1975. The influence of phosphate and crop species on Endogone spores and vesicular-arbuscular mycorrhiza under field conditions. Plant Soil. 43, 489-495. https://doi.org/10.1007/BF01928510
  18. Kawahata, T., Otake, T., Mori, H., Kojima, Y., Oishi, I., Oka, S., et al., 2002. A novel substance purified from Perilla frutescens Britton inhibits an early stage of HIV-1 replication without blocking viral adsorption. Antivir. Chem. Chemother. 13(5), 283-288. https://doi.org/10.1177/095632020201300503
  19. Koide, R.T., Mosse, B., 2004. A history of research on arbuscular mycorrhiza. Mycorrhiza 14, 145-163. https://doi.org/10.1007/s00572-004-0307-4
  20. Lu, S., Miller, M.H., 1989. The role of VA mycorrhizae in the absorption of P and Zn by maize in field and growth chamber experiments. Canadian J. Soil Sci. 69, 97-109. https://doi.org/10.4141/cjss89-009
  21. Phillips, J.M., Hayman, D.S., 1970. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55, 158-161. https://doi.org/10.1016/S0007-1536(70)80110-3
  22. Ravindran, P. N., and Shylaja, M., 2004. Perilla. In K. V. Peter (Eds.), Handbook of herbs and spices. Cambridge: Woodhead Publishing Ltd., pp. 482-494.
  23. Rillig, M.C., 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 84, 355-363. https://doi.org/10.4141/S04-003
  24. Rillig, M.C., Mummey, D.L., 2006. .Mycorrhizas and soil structure. New Phytol. 171, 41-53. https://doi.org/10.1111/j.1469-8137.2006.01750.x
  25. SAS Institute, 1990. SAS User Guide, Version 6.08. SAS Institute Inc., SAS Circle, Box 8000, Cary, NC, 27515-800010.
  26. Schenck, N.C., Perez, Y., 1990. Manual for the Identification of VA Mycorrhizal Fungi. Synergistic Publications, Gainesville, pp. 17-36.
  27. Smith, S.E., Read, D.J., 1997. Mycorrhizal Symbiosis. Academic Press, London, p. 605.
  28. Sohn, B.K., Kim, K.Y., Chung, S.J., Kim, W.S., Park, S.M., Kang, J.K., Rim, Y.S., Cho, J.S., Kim, T.H., Lee, J.H., 2003. Effect of the different timing of AMF inoculation on plant growth and flower quality of chrysanthemum. Sci. Hort. 98, 173-183. https://doi.org/10.1016/S0304-4238(02)00210-8
  29. Sorensen, J.N., Larsen, J., Jakobsen, I., 2005. Mycorrhiza formation and nutrient concentration in leek (Allium porrum) in relation to previous crop and cover crop management on high P soil. Plant and Soil. 273, 101-114. https://doi.org/10.1007/s11104-004-6960-8
  30. Ueda, H., Yamazaki, C., Yamazaki, M., 2003. Inhibitory effect of Perilla leaf extract and luteolin on mouse skin tumor promotion. Biol. Pharmaceut. Bull. 26(4), 560-563. https://doi.org/10.1248/bpb.26.560
  31. van der Heijden, M.G., Streitwolf-Engel, R., Riedl, R., Siegrist, S., Neudecker, A., Ineichen, K., Boller, T., Wiemken, A., Sanders, I.R., 2006. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol. 172, 739-752. https://doi.org/10.1111/j.1469-8137.2006.01862.x
  32. Watanabe, Y., Uchiyama, F., Yoshida, K., 1994. Compositional changes in spinach (Spinacia oleracea L.) grown in the summer and in the fall. J. Jpn. Soc. Hortic. Sci. 62, 889-895. https://doi.org/10.2503/jjshs.62.889
  33. Yamamoto, H., and Ogawa, T., 2002. Antimicrobial activity of perilla seed polyphenols against oral pathogenic bacteria. Biosci. Biotechnol. Biochem. 66(4), 921-924. https://doi.org/10.1271/bbb.66.921
  34. Yamasaki, K., Nakano, M., Kawahata, T., Mori, H., Otake, T., Ueba, N., et al., 1998. Anti-HIV-1 activity of herbs in Labiatae. Biol. Pharm. Bull. 21(8), 829-833. https://doi.org/10.1248/bpb.21.829
  35. Yano-Melo, A.M., Maia, L.C., Saggin, O.J., Lima-Filho, .M., Melo, N.F., 1999. Effect of arbuscular mycorrhizal fungi on the acclimatization of micropropagated banana plantlets. Mycorrhiza 9, 119-123. https://doi.org/10.1007/s005720050009