DOI QR코드

DOI QR Code

Degradation of Fungicide Tolclofos-methyl by Chemical Treatment

살균제 Tolclofos-methyl의 화학적 처리에 의한 분해

  • Shin, Kab-Sik (School of Applied Biosciences, Kyungpook National University) ;
  • Jeon, Young-Hwan (School of Applied Biosciences, Kyungpook National University) ;
  • Kim, Hyo-Young (School of Applied Biosciences, Kyungpook National University) ;
  • Hwang, Jung-In (School of Applied Biosciences, Kyungpook National University) ;
  • Lee, Sang-Man (School of Applied Biosciences, Kyungpook National University) ;
  • Shin, Jae-Ho (School of Applied Biosciences, Kyungpook National University) ;
  • Kim, Jang-Eok (School of Applied Biosciences, Kyungpook National University)
  • 신갑식 (경북대학교 농업생명과학대학 응용생명과학부) ;
  • 전영환 (경북대학교 농업생명과학대학 응용생명과학부) ;
  • 김효영 (경북대학교 농업생명과학대학 응용생명과학부) ;
  • 황정인 (경북대학교 농업생명과학대학 응용생명과학부) ;
  • 이상만 (경북대학교 농업생명과학대학 응용생명과학부) ;
  • 신재호 (경북대학교 농업생명과학대학 응용생명과학부) ;
  • 김장억 (경북대학교 농업생명과학대학 응용생명과학부)
  • Received : 2010.11.19
  • Accepted : 2010.12.20
  • Published : 2010.12.30

Abstract

Tolclofos-methyl is one of the most widely used organophosphorous pesticides in control of soil-borne diseases in ginseng field. In Korea, residues of tolclofosmethyl in ginseng and cultivation soil is quite often detecting. The objective of this study was to know the possibility for the accelerated degradation of tolclofos-methyl by various chemical treatment under soil slurry condition. The degradation of tolclofos-methyl was accelerated by zerovalent metals treatment in soil slurry. The degradation rate of tolclofos-methyl was found to be at higher zerovalent zinc than unannealed zerovalent and annealed zerovalent iron. The effect of different sizes of zerovalent iron on tolclofos-methyl degradation was showed that the smaller size of zerovalent iron, the greater the degradation rate. In aqueous solution of pH 4.0 below the degradation rate of tolclofos-methyl was very high. Under this experimental condition, tolclofos-methyl degradation was the greatest at 2% (w/v) of ZVI under 0.1 N of HCl in 24 hours, the degradation rate was 94.4%. By testing various chemicals, it was found that $Fe_2(SO_4)_3$ as iron source showed better for degrading tolclofos-methyl in $H_2O_2$ 500 mM treatment and sodium sulfite also showed the degradable possibility tolclofos-methyl in soil slurry.

살균제 tolclofos-methyl은 인삼 및 인삼 경작지 토양에서 빈번히 검출되고 있어 그 안전성이 문제시되고 있다. 이에 tolclofos-methyl을 토양 slurry조건에서 여러 종류의 화학적 처리를 통하여 분해되는 정도를 조사하였다. ZVI를 처리한 경우 uZVI가 aZVI보다 tolclofos-methyl의 분해를 촉진 하였으며 uZVI와 ZVZn의 경우에는 ZVZn가 더 촉진시키는 것으로 나타났다. uZVI와 ZVZn 처리구에서는 처리량이 증가할수록 그리고 입경이 작을수록 더 잘 분해되는 것으로 나타났다. pH 4.0 이하의 산성 조건하에서 처리된 ZVI는 tolclofos-methyl의 분해를 더욱 촉진시켜 수용액에서 24시간 만에 94.4%까지 분해시켰다. Fenton 반응을 이용한 tolclofos-methyl의 분해는 iron source로 $Fe_2(SO_4)_3$가 가장 효과적이었으며, $H_2O_2$ 500 mM 처리구에서 93.5%까지 분해되었다. Sodium bisulfite를 이용한 토양 slurry 중의 tolclofos-methyl의 분해는 처리량이 증가할수록 분해가 촉진되었으며 50 mM 처리구에서 52.9%가 분해되었다.

Acknowledgement

Supported by : 농촌진흥청

References

  1. Bian, H., Chen, J., Cai, X., Liu P., Wang, Y., Huang, L., Qiao, X., Hao, C., 2009, Dechlorination of chloroacetanilide herbicides by plant growth regulator sodium bisulfite, Wat. Res. 43, 3556-3574.
  2. Fennelly, J. P., Roberts, A. L., 1998, Reaction of 1,1,1-trichloroethane with zero-valent metals and bimetallic reductants, Envirion. Sci. Technol. 32(13), 1980-1988. https://doi.org/10.1021/es970784p
  3. Kim, B.H., Ahn, M.Y., Kim, J.E., 1999, Degradation of herbicide paraquat by Fenton reagent and UV light irradiation, Korean J. Pestic. Sci. 3(3), 20-26.
  4. Kim, J.E., Kim, T.H., Kim, Y.H., Lee, J.H., Kim, J.S., Paek, S.K., Choi, S.Y., Youn, Y.N., Yu, Y.M., 2008, Residues of tolclofos-methyl, azoxystrobin and difenoconazole in ginseng sprayed by safe use guideline, Korean J. Medical Crop Sci., 16(6), 390-396.
  5. Lee, J.H., Kim, Y.H., Jeon Y.H., Shin, K.S., Kim, H.Y., Kim, T.H., Park, C., Yu, Y.M., Kim, J.E., 2009, Residues amounts of cypermethrin and diethofencarb in ginseng sprayed by safe use guideline, Korean J. Environ. Agric., 28(4), 412-418. https://doi.org/10.5338/KJEA.2009.28.4.412
  6. Liu, Y., Yang F., Yue, P. L., Chen G., 2001, Catalytic dechlorination of chlorophenols in waterby palladium/iron, Wat. Res. 35(8), 1887-1899. https://doi.org/10.1016/S0043-1354(00)00463-2
  7. Min, Z.W., Kim, T.H., Shin, J.H., Lee, S.M., Kim, J.E., 2009, Accelerated effect of ferric salts on degradation of thiophosphate fungicide, tolclofos-methyl by zerovalent iron, J. Korean Soc. Appl. Biol. Chem. 52(6), 681-687. https://doi.org/10.3839/jksabc.2009.113
  8. Morales, J., Hutcheson, R., Cheng, I. F., 2002, Dechlorination of chlorinated phenols by catalyzed and un catalyzed Fe(0) and Mg(0) particles, J. Hazardous Mater. B90, 97-108.
  9. Rahman, M.M., Kim, J.E., 2010, Remediation of water contaminated with herbicide oxadiazon using Fenton reagent, J. Korean Soc. Appl. Biol. Chem., 53(4), 458-463. https://doi.org/10.3839/jksabc.2010.070
  10. Roberts, A. L., Totten, L. A. T., William, A. A., David, R. B., Timothy, J. C., 1996, Reductive elimination of chlorinated ethylenes by zero-valent metals, Envirion. Sci. Technol. 30(8), 2654-2659. https://doi.org/10.1021/es9509644
  11. Sarathy, V., Salter, A. J., Nurmi, J. T., Johnson, G. O., Johnson, R. L., Tratnyek, P. G., 2010, Degradation of 1,2,3-trichloropropane(TCP) : hydrolysis, elimination and reduction by iron and zinc, Envirion. Sci. Technol. 44, 787-793. https://doi.org/10.1021/es902595j
  12. Shea, P. J., Machacek, T.A., Comfort, S.D., 2004, Accelerated remediation of pesticide-contaminated soil with zerovalent iron, Environ. Pollut. 132, 183-188. https://doi.org/10.1016/j.envpol.2004.05.003
  13. Shin., H.S., Kim, T.K., Kim J.E., 2009, Dechlorination of organochlorine insecticide, endosulfan by zerovalent iron, Korean J. Environ. Agric. 28(2), 202-208. https://doi.org/10.5338/KJEA.2009.28.2.202
  14. Tomlin, C. D. S., 2006, The Pesticide Manual, fourteenth edition, BCPC, Hampshire, UK, pp. 1043-1044.
  15. Villa, R. D., Nogueira, R. F. P., 2006, Oxidation of p,p' -DDT and p,p'-DDE in highly and long-term contaminated soil using Fenton reaction in a slurry system, Sci.Total Envirion. 371, 11-18. https://doi.org/10.1016/j.scitotenv.2006.05.010
  16. Yun, J.K., Kim, T.H., Kim, J.E., 2008, Dechlorination of the fungicide chlorothalonil by zerovalent iron and manganese oxides, Korean J. Pestic. Sci. 12(1), 43-49.

Cited by

  1. Translocation of Tolclofos-methyl from Ginseng Cultivated Soil to Ginseng (Panax ginseng C. A. Meyer) and Residue Analysis of Various Pesticides in Ginseng and Soil vol.18, pp.3, 2014, https://doi.org/10.7585/kjps.2014.18.3.130
  2. Evaluation of Residual Pesticides in Fresh Ginseng Collected in Seoul vol.56, pp.1, 2013, https://doi.org/10.3839/jabc.2013.006