DOI QR코드

DOI QR Code

Solubilization Characteristics of Piggery Slurry by Different Storage type and Temperature Conditions

돈분 슬러리의 저장형태 및 온도에 따른 가용화 특성

  • Park, Woo-Kyun (National Academy of Agricultural Science, Rural Development Administration) ;
  • Jun, Hang-Bae (Department of Environmental Engineering, Chungbuk National University) ;
  • Park, Noh-Back (National Academy of Agricultural Science, Rural Development Administration) ;
  • Hong, Seung-Gil (National Academy of Agricultural Science, Rural Development Administration)
  • 박우균 (농촌진흥청 국립농업과학원) ;
  • 전항배 (충북대학교 환경공학과) ;
  • 박노백 (농촌진흥청 국립농업과학원) ;
  • 홍승길 (농촌진흥청 국립농업과학원)
  • Received : 2010.11.29
  • Accepted : 2010.12.23
  • Published : 2010.12.30

Abstract

The current study investigated the fate of organic matter in piggery slurry under two different store systems(closed store system and open store system) in association with different temperature. Thirty days after storing in both systems at $20^{\circ}C$, it was observed that the content of organic matter remained in piggery slurry with closed store system was twice more than that with open store system implying more efficient degradation of organic matter with open store system. Temperature also influenced on the organic matter degradation in piggery slurry as shown decline in TS and VS contents as the temperature increased. With store at $35^{\circ}C$, 29% of initial organic matter was reduced while there was only 23% reduction of organic matter at $20^{\circ}C$. There was no difference in the type of organic fatty acids(VFAs) produced under the range of temperature(20, $35^{\circ}C$) simulating summer condition. Increases in organic fatty acids contents with hydrolysis and acid producing microbial was observed from 15 days after initiating store of the piggery slurry and the total organic acid amount produced 30 days after store was $2,829\;mg{\cdot}COD/L$ and $9,123\;mg{\cdot}COD/L$ at $20^{\circ}C$ and $35^{\circ}C$, respectively. These corresponded to 5.4% and 17.4% of the initial organic matter contents in piggery slurry, respectively.

본 연구에서는 돈분 슬러리의 저장형태 및 온도에 따른 유기물의 거동을 관찰하였는데, closed system과 open system의 저장형태에 따른 유기물 농도는 $20^{\circ}C$에서 30일 저장 후 약 2배 정도의 차이를 보였다. 또한 온도에 의한 유기물 농도의 거동은 온도가 증가할수록 TS 및 VS 농도가 감소하였고, $20^{\circ}C$ 약 23%, $35^{\circ}C$ 약 29% 정도가 감소되는 것으로 나타났다. 하절기 외부온도 특성을 반영한 온도조건(20, $35^{\circ}C$) 및 저장기간 따른 생성된 유기산 종류는 비슷하였고, 저장기간 15일 이후부터 분변내 포함된 가수분해 및 산생성 미생물의 성장이 증대되어 유기산의 생성이 증가하였다. 반응시간 30일 후 생성된 총유기산 농도는 $20^{\circ}C$에서 $2,829\;mg{\cdot}COD/L$이었으며, $30^{\circ}C$에서는 $9,123\;mg{\cdot}COD/L^{\circ}C$로 초기 유기물농도 대비 각각 5.4, 17.4%의 유기산 전환율을 나타내었다. 따라서 돈분슬러리의 저장기간이 길어질수록 외부온도에 따라 가수분해 및 산생성 반응으로 유기산이 생성되고, 메탄생성균의 기질이용으로 유기물의 손실이 발생하여 온실가스 배출도 증가할 것으로 예상된다.

Keywords

References

  1. APHA, 1998. Standard methods for the examination of water and wastewater, 20th ed., Washington, D.C.
  2. Breure, A.M. and Van Andel, J.G., 1984. Hydrolysis and acidification fermentation of a protein gelatin in an anaerobic continuous culture, Appl. Microbiol. Biotechnol. 20(1), 40-45. https://doi.org/10.1007/BF00254644
  3. Dreier, D.E., 1963. Aerobic digestion of solid, proceedings of the 18th annual Purdue Industrial waste conference.
  4. Elefesiniotis, P. and Oldhan, W.K., 1994. The effect of operation parameter on the acid-phase anaerobic fermentation in the biological phosphorus removal process, Proc. ASCE. Natl. Conf. Environ. Eng. 325-330.
  5. Elefsiniotis, P. and Wareham, D.G., 2007. Utilization patterns of vilatile fatty acids in the denitrification reaction, Enzyme and Microbial Tech. 41, 92-97. https://doi.org/10.1016/j.enzmictec.2006.12.006
  6. Elefsiniotis, P., Wareham, D.G. and Smith, M.O., 2004. Use of volatile fatty acids an acid-phase digester for denitrification, J. of Biotechnol. 114, 289-297. https://doi.org/10.1016/j.jbiotec.2004.02.016
  7. Husted, S., 1993. An open chamber technique for determination of methane emission from stored livestock manure, Atmospheric Environment, 27A, 1635-1642.
  8. Mahmoud, N., Zeeman, G., Gijzen, H. and Lettinga, G., 2004. Anaerobic stabilization and conversion of biopolymers in primary sludge-effect of temperature and sludge retention time, Wat. Res. 38, 983-991. https://doi.org/10.1016/j.watres.2003.10.016
  9. Mata-Alvarez, J., Mace, S. and Llabres, P., 2000. Anaerobic digestion of organic solid wastes, An overview of research achievements and perspectives, Biores. Technol. 74, 3-16. https://doi.org/10.1016/S0960-8524(00)00023-7
  10. Metcalf and Eddy, 2004. Wastewater engineering: Treatment and reuse, Fourth Edition, Mcgraw-Hill Inc.
  11. Park, S.M., Park, N.B., Seo, T.K. and Jun, H.B., 2008. Effects of denitrification on acid production in a two-phase anaerobic digestion process, J. KSEE. 30(6), 628-636.
  12. Park, W.K., Jun, H.B., Kwon, S.I., Chea, K.J. and Park, N.B., 2010. Optimum recovery of biogas from pig slurry with different compositions, Korean J. Environ. Agric. 29(2), 197-205. https://doi.org/10.5338/KJEA.2010.29.2.197
  13. Patni, N.K., Jackson, H., Masse, D.I., Wolynetz, M.S. and Kinsman, R., 1995. Greenhouse gas release from stored dairy cattle manure slurry, In proceedings 7th International Symposium on Agricultural and Food Processing Wastes, 261-271.
  14. Pavlostathis, S.G. and Giraldo-Gomez, E., 1991. Kinetics of anaerobic treatment, Wat. Sci. Tech., 24(8), 35-59.
  15. USEPA, 1997. A manual for developing biogas systems at commercial farms in the united states, Ag STAR Handbook, EPA-430-B-97-015, US Environmental Protection Agency, Atmospheric Pollution Prevention Division, Washington, D. C.
  16. Williams, A.G. and Evals, M.R., 1981. Storage of piggery slurry, Agricultural waste, 3, 311-321. https://doi.org/10.1016/0141-4607(81)90017-2
  17. Zhang, R. and Felmann, D.J., 1997. Animal manure management-agriculture scoping syudy, The EPRI Agricultural technology Alliance-Electric Power Research Institute, C109139.

Cited by

  1. Study on the Development of Horticultural Media using Recyled Used-mushroom-media vol.23, pp.2, 2014, https://doi.org/10.5322/JESI.2014.23.2.303