DOI QR코드

DOI QR Code

Specific PCR Detection of Four Quarantine Fusarium Species in Korea

  • Hong, Sae-Yeon (Department of Medical Biotechnology, Soonchunhyang University) ;
  • Kang, Mi-Ran (Department of Medical Biotechnology, Soonchunhyang University) ;
  • Cho, Eun-Ji (Department of Medical Biotechnology, Soonchunhyang University) ;
  • Kim, Hee-Kyoung (Department of Medical Biotechnology, Soonchunhyang University) ;
  • Yun, Sung-Hwan (Department of Medical Biotechnology, Soonchunhyang University)
  • Received : 2010.11.04
  • Accepted : 2010.11.18
  • Published : 2010.12.01

Abstract

Fusarium species, a large group of plant pathogens, potentially pose quarantine concerns worldwide. Here, we focus on the development of a method for detecting four Fusarium species in quarantined plants in Korea: F. solani f. sp. cucurbitae, F. stilboides, F. redolens, and F. semitectum var. majus. Species-specific primers were designed from the nucleotide sequences of either the translation elongation factor-1 alpha (TEF1) gene or RNA polymerase II subunit (RPB2) gene. Two different primer sets derived from TEF1, all specific to F. solani f. sp. cucurbitae, were able to differentiate the two races (1 and 2) of this species. A set of nested primers for each race was designed to confirm the PCR results. Similarly, two primer sets derived from RPB2 successfully amplified specific fragments from five F. stilboides isolates grouped within a single phylogenetic clade. A specific TEF1 primer set amplified a DNA fragment from only four of the 12 F. redolens strains examined, which were grouped within a single phylogenetic clade. All of the F. semitectum var. majus isolates could be specifically detected with a single RPB2 primer set. The specificity of the primer sets developed here was confirmed using a total of 130 Fusarium isolates.

Keywords

References

  1. Baayen, R. P., O’Donnell, K., Bonants, P. J. M., Cigelnik, E., Kroon, L. P. N. M., Roebroeck, E. J. A. and Waalwijk, C. 2000. Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and non-monophyletic formae speciales causing wilt and rot diseases. Phytopathology 90:891-900. https://doi.org/10.1094/PHYTO.2000.90.8.891
  2. Bogale, M., Wingfield, B. D., Wingfield, M. J. and Steenkamp, E. T. 2007. Species-specic primers for Fusarium redolens and a PCR-RFLP technique to distinguish among three clades of Fusarium oxysporum. FEMS Microbiol. Lett. 271:27-32 https://doi.org/10.1111/j.1574-6968.2007.00687.x
  3. Chi, M. H, Park, S. Y. and Lee, Y. H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111. https://doi.org/10.5423/PPJ.2009.25.1.108
  4. Gerlach, W. and Nirenberg, H. I. 1982. The genus Fusarium-a pictoral atlas. Mitt Biol Bundesanst Land- Forstwirtsch, Berlin, Germany.
  5. Geiser, D. M., Ivey, M. L. L., Hakiza, G., Juba, J. H. and Miller, S. A. 2005. Gibberella xylarioides (anamorph: F. xylarioides), a causative agent of coffee wilt disease in Africa, is a previously unrecognized member of the G. fujikuroi species complex. Mycologia 97:191-201. https://doi.org/10.3852/mycologia.97.1.191
  6. Hawa, M. M., Salleh, B. and Latiffah, Z. 2010. Characterization and intraspecific variation of Fusarium semitectum (Berkeley and Ravenel) associated with red-fleshed dragon fruit (Hylocereus polyrhizus [Weber] Britton and Rose) in Malysia. African J. Biotechnol. 9:273-284.
  7. Kim, H. K., Lee, T. and Yun, S. H. 2008. A putative pheromone signaling pathway is dispensable for self-fertility in the homothallic ascomycete Gibberella zeae. Fungal Genet. Biol. 45: 1188-1196. https://doi.org/10.1016/j.fgb.2008.05.008
  8. Liu, Y. L., Whelen, S. and Hall, B. D. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol. Biol. Evol. 16:1799-1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
  9. Mehl, H. L. and Epstein, L. 2007. Identification of Fusarium solani f. sp. cucurbitae race 1 and race 2 with PCR and production of disease-free pumpkin seeds. Plant Dis. 91:1288-1292. https://doi.org/10.1094/PDIS-91-10-1288
  10. Mule, G., Susca, A., Stea, G. and Moretti, A. 2004. A species-specific PCR assay based on the calmodulin partial gene for identification of Fusarium verticillioides, F. proliferatum and F. subglutinans. Eur. J. Plant Pathol. 110:495-502. https://doi.org/10.1023/B:EJPP.0000032389.84048.71
  11. O’Donnell, K. and Cigelnik, E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 7:103-116. https://doi.org/10.1006/mpev.1996.0376
  12. O’Donnell, K., Kistler, H. C., Cigelnik, E. and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA 95:2044-2049. https://doi.org/10.1073/pnas.95.5.2044
  13. Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  14. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673

Cited by

  1. Identification ofFusariumspecies causing basal rot of onion in East Azarbaijan province, Iran and evaluation of their virulence on onion bulbs and seedlings vol.47, pp.9, 2014, https://doi.org/10.1080/03235408.2013.829628
  2. Detection of Fusarium verticillioides Contaminated in Corn Using a New Species-specific Primer vol.17, pp.3, 2011, https://doi.org/10.5423/RPD.2011.17.3.369
  3. Genetic Diversity of <i>Fusarium solani</i> f. sp. <i>cucurbitae</i>, the Causal Root and Crown Rot of Cucurbits (Melon) by Using Molecular Markers and Control vol.07, pp.15, 2016, https://doi.org/10.4236/ajps.2016.715191
  4. Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum vol.38, pp.2, 2014, https://doi.org/10.1016/j.jgr.2013.11.016
  5. Transmission of Fusarium boothii Mycovirus via Protoplast Fusion Causes Hypovirulence in Other Phytopathogenic Fungi vol.6, pp.6, 2011, https://doi.org/10.1371/journal.pone.0021629
  6. Population Structure of the Gibberella fujikuroi Species Complex Associated with Rice and Corn in Korea vol.28, pp.4, 2012, https://doi.org/10.5423/PPJ.OA.09.2012.0134
  7. Species Complex 11 from Soybean Roots and Soil vol.102, pp.2, 2018, https://doi.org/10.1094/PDIS-03-17-0447-RE