DOI QR코드

DOI QR Code

Population Structure of Fusarium graminearum from Maize and Rice in 2009 in Korea

  • Lee, Seung-Ho (Microbial Safety Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Jung-Kwan (Center for Fungal Pathogenesis, Seoul National University) ;
  • Nam, Young-Ju (Microbial Safety Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Soo-Hyung (Microbial Safety Division, National Academy of Agricultural Science, RDA) ;
  • Ryu, Jae-Gee (Microbial Safety Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Theresa (Microbial Safety Division, National Academy of Agricultural Science, RDA)
  • Received : 2010.11.12
  • Accepted : 2010.11.23
  • Published : 2010.12.01

Abstract

We performed diagnostic PCR assays and a phylogenetic analysis using partial sequences of TEF1 (translation elongation factor-1) to determine the trichothecene chemotypes and genetic diversity of F. graminearum isolates from maize and rice samples collected in 2009 in Korea. PCR using a species-specific primer set revealed a total of 324 isolates belonging to the putative F. graminearum species complex. PCR with trichothecene chemotypespecific primers revealed that the nivalenol (NIV) chemotype was predominant among the fungal isolates from rice (95%) in all provinces examined. In contrast, the predominant chemotype among the corn isolates varied according to region. The deoxynivalenol (DON) chemotype was found more frequently (66%) than the NIV chemotype in Gangwon Province, whereas the NIV chemotype (70%) was predominant in Chungbuk Province. Phylogenetic analysis showed that all DON isolates examined were clustered into lineage 7, while the NIV isolates resided within lineage 6 (F. asiaticum). Compared with previous studies, the lineage 6 isolates in rice have been predominantly maintained in southern provinces, while the dominance of lineage 7 in maize has been evident in Gangwon at a slightly reduced level.

Keywords

References

  1. Bottalico, A. 1998. Fusarium diseases of cereals: Species complex and related mycotoxin profiles, in Europe. J. Plant Pathol. 80:85-103.
  2. Gale, R. L., Chen, L. F., Hernick, C. A., Takamura, K. and Kistler, H. C. 2002. Population analysis of Fusarium graminearum from wheat fields in eastern China. Phytopathology 92:1315-1322. https://doi.org/10.1094/PHYTO.2002.92.12.1315
  3. Geiser, D. M., Jiménez-Gasco1, M. M., Kang, S., Makalowska, I., Veeraraghavan, N., Ward, T. J., Zhang, N., Kuldau, G. A. and O’Donnell, K. 2004. FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium. Eur. J. of Plant Pathol. 110:473-479. https://doi.org/10.1023/B:EJPP.0000032386.75915.a0
  4. Karugia, G. W., Suga, H., Gzle, L. R., Nakajima, T., Ueda, A. and Hyakumachi, M. 2009. Population structure of Fusarium asiaticum from two Japanese regions and eastern China. J. Gen. Plant Pathol. 75:110-118. https://doi.org/10.1007/s10327-009-0153-5
  5. Kim, H. S., Lee, T., Dawlatana, M., Yun, S. H. and Lee, Y. W. 2003. Polymorphism of trichothecene biosynthesis genes in deoxynivalenol- and nivalenol-producing Fusarium graminearum isolates. Mycol. Res. 107:190-197. https://doi.org/10.1017/S0953756203007317
  6. Lee, J., Chang, I. Y., Kim, H., Yun, S. H., Leslie, J. F. and Lee, Y. W. 2009. Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl. Environ. Microbiol. 75:3289-3295. https://doi.org/10.1128/AEM.02287-08
  7. Lee, T., Han, Y. K., Kim, K. H., Yun, S. H. and Lee, Y. W. 2002. Tri13 and Tri7 determine deoxynivalenol and nivalenol producing chemotypes of Gibberella zeae. Appl. Environ. Microbiol. 68:2148-2154. https://doi.org/10.1128/AEM.68.5.2148-2154.2002
  8. Lee, T., Oh, D. W., Kim, H. S., Lee, J., Kim, Y. H., Yun, S. H. and Lee, Y. W. 2001. Identification of deoxynivalenol and nivalenol producing chemotypes of Gibberella zeae using PCR. Appl. Environ. Microbiol. 67:2966-2972. https://doi.org/10.1128/AEM.67.7.2966-2972.2001
  9. Lee, Y. W., Jeon, J. J., Kim, H., Jang, I. Y., Kim, H. S., Yun, S. H. and Kim, J. G. 2004. Lineage composition and trichothecenes production of Gibberella zeae population in Korea, p.117-122. In T. Yoshizawa (ed.), New horizons of mycotoxicology for assuring food safety. Japanese Association of Mycotoxicology, Kagawa, Japan.
  10. Leslie, J. F. and Summerell, B. A. 2006. The Fusarium laboratory manual. Blackwell Publishing, Ames, IA, USA.
  11. Nei, M. and Kumar, S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.
  12. Nicholson, P., Simpson, D. R., Weston, G., Rezanoor, H., Lees, N., Parry, A. K. and Joyce, D. W. 1998. Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiol. Mol. Plant Pathol. 53:17-37. https://doi.org/10.1006/pmpp.1998.0170
  13. O’Donnell, K., Kistler, H. C., Cigelnik, E. and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: Condordant evidence from nuclear and mitochondrial gene genealogies. Appl. Biol. Sci. 95:2044-2049.
  14. O’Donnell, K., Kistler, H. C., Tacke, B. K. and Casper, H. H. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. USA 97:7905-7910. https://doi.org/10.1073/pnas.130193297
  15. O’Donnell, K., Ward, T. J., Geiser, D. M., Kistler, H. C. and Aoki, T. 2004. Genealogical concordance between the mating-type locus and seven other nuclear gene supports formal recognition of nine phylogenetically distinct species within the Fusariumgraminearum clade. Fungal Genet. Biol. 41:600-623. https://doi.org/10.1016/j.fgb.2004.03.003
  16. O’Donnell, K., Ward, T. J., Aberra, D., Kistler, H. C., Aoki, T., Orwing, N., Kimura, M., Bjørnstad, Å. and Klemsdal, S. S. 2008. Multilocus genotyping and molecular phylogentics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal Genet. Biol. 45:1514-1522. https://doi.org/10.1016/j.fgb.2008.09.002
  17. Proctor, R. H., Hohn, T. M. and McCormick, S. P. 1995. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol. Plant-Microbe Interact. 8:593-601. https://doi.org/10.1094/MPMI-8-0593
  18. Qu, B., Li, H. P., Zhang, J. B., Xu, Y. B., Huang, T., Wu, A. B., Zhao, C. S., Carter, J., Nicholson, P. and Liao, Y. C. 2008. Geographic distribution and genetic diversity of Fusarium graminearum and F. asiaticum on wheat spikes throughout China. Plant Pathol. 57:15-24.
  19. Scoz, L. B., Astolfi, P., Reartes, D. S., Schmale III, D. G., Moraes, M. G. and Del Ponte, E. M. 2009. Trichothecene mycotoxin genotypes of Fusarium graminearum sensu stricto and Fusarium meridionale in wheat from southern Brazil. Plant Pathology 58:344-351. https://doi.org/10.1111/j.1365-3059.2008.01949.x
  20. Suga, H., Karugia, G. W., Ward, T., Gale, L. R., Tomimura, K., Nakajima, T., Miyasaka, A., Koizumi, S., Kageyama, K. and Hyakumachi, M. 2008. Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology 98:159-166. https://doi.org/10.1094/PHYTO-98-2-0159
  21. Starkey, D. E., Ward, T. J., Aoki, T., Gale, L. R., Kistler, H. C., Geiser, D. M., Suga, H., Tóth, B., Varga, J. and O’Donnell, K. 2007. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet. Biol. 44:1191-1204. https://doi.org/10.1016/j.fgb.2007.03.001
  22. Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  23. Thompson, J. D., Higgins, D. G., and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  24. Ueda, A., Nishimoto, H., Kato, N., Hirano, T. and Fukaya, M. 2007. Lineages and trichothecene mycotoxin types of fusarium head blight pathogens of wheat and barley in Todai district. Res. Bull. Aichi. Agric. Res. Ctr. 39:17-23.
  25. Ward, T. J., Bielawski, J. P., Kistler, H. C., Sullivan, E. and O’Donnell, K. 2002. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc. Natl. Acad. Sci. USA 99:9278-9283. https://doi.org/10.1073/pnas.142307199
  26. Ward, T. J., Clear, R. M., Rooney, A. P., O’Donnell, K. Gaba, D., Patick, S., Starkey, D. E., Gilbert, J., Geiser, D. and Nowicki, T. W. 2008. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet. Biol. 45:473-484. https://doi.org/10.1016/j.fgb.2007.10.003
  27. Yang, L., Lee, T., Yang, X., Yu, D. and Waalwijk, C. 2008. Fusarium population on Chinese barley show a dramatic gradient in mycotoxin profiles. Phytopathology 98:719-727. https://doi.org/10.1094/PHYTO-98-6-0719
  28. Yli-Mattila, T., Gagkaeva, T., Ward, T. J., Aoki, T., Kistler, H. C. and O’Donnell, K. 2009. A novel Asian clade within Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East. Mycologia 101:841-852. https://doi.org/10.3852/08-217
  29. Zhang, Z., Zhang, H., Lee, T., Chen, W. Q., Arens, P., Xu, J., Xu, J. S., Yang, L. J., Yu, D. Z., Waalwijk, C. and Feng, J. 2010. Geographic substructure of Fusarium asiaticum isolates collected from barly in China. Eur. J. Plant Pathol. 127:239-248. https://doi.org/10.1007/s10658-010-9588-y

Cited by

  1. Biological Efficacy of Streptomyces sp. Strain BN1 against the Cereal Head Blight Pathogen Fusarium graminearum vol.29, pp.1, 2013, https://doi.org/10.5423/PPJ.OA.07.2012.0113
  2. Characterization of Fusarium Strains Recovered From Wheat With Symptoms of Head Blight in Kentucky vol.99, pp.11, 2015, https://doi.org/10.1094/PDIS-06-14-0610-RE
  3. Occurrence of Toxigenic Fusarium vorosii among Small Grain Cereals in Korea vol.32, pp.5, 2016, https://doi.org/10.5423/PPJ.OA.05.2016.0123
  4. Occurrence of Fungi and Fusarium Mycotoxins in the Rice Samples from Rice Processing Complexes vol.20, pp.4, 2014, https://doi.org/10.5423/RPD.2014.20.4.289
  5. Molecular Characterization of Fusarium Graminearum Virus 2 Isolated from Fusarium graminearum Strain 98-8-60 vol.27, pp.3, 2011, https://doi.org/10.5423/PPJ.2011.27.3.285
  6. Composition and toxigenic potential of theFusarium graminearumspecies complex from maize ears, stalks and stubble in Brazil vol.65, pp.7, 2016, https://doi.org/10.1111/ppa.12497
  7. Trichothecene Genotype Composition of Fusarium graminearum Not Differentiated Among Isolates from Maize Stubble, Maize Ears, Wheat Spikes, and the Atmosphere in New York vol.105, pp.5, 2015, https://doi.org/10.1094/PHYTO-10-14-0266-R
  8. Estrogenic Compounds Compatible with a Conditional Gene Expression System for the Phytopathogenic Fungus Fusarium graminearum vol.27, pp.4, 2011, https://doi.org/10.5423/PPJ.2011.27.4.349
  9. Fusarium graminearum Isolates from Wheat and Maize in New York Show Similar Range of Aggressiveness and Toxigenicity in Cross-Species Pathogenicity Tests vol.105, pp.4, 2015, https://doi.org/10.1094/PHYTO-07-14-0208-R
  10. Biogeography ofFusarium graminearumspecies complex and chemotypes: a review vol.32, pp.4, 2015, https://doi.org/10.1080/19440049.2014.984244
  11. Population Structure and Genetic Diversity of the Fusarium graminearum Species Complex vol.3, pp.12, 2011, https://doi.org/10.3390/toxins3081020