References
- T. Duerig, A. Pelton, D. Stöckel, 1999, An overview of nitinol medical applications, Mater. Sci. Eng. A, Vol. 273-275, pp. 149-160. https://doi.org/10.1016/S0921-5093(99)00294-4
- J. V. Humbeeck, 1999, Non-medical applications of shape memory alloys, Mater. Sci. Eng. A, Vol. 273-275, pp. 134-148. https://doi.org/10.1016/S0921-5093(99)00293-2
- N. B. Morgan, 2004, Medical shape memory alloy applications-the market and its products, Mater. Sci. Eng. A, Vol. 378, pp. 16-23. https://doi.org/10.1016/j.msea.2003.10.326
- Q. P. Sun, K. C. Hwang, 1993, Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloys-I. Derivation of general relations, J. Mech. Phys. Solids, Vol. 41, pp. 1-17. https://doi.org/10.1016/0022-5096(93)90060-S
- E. Patoor, A. Eberhardt, M. Berveiller, 1988, Thermomechanical behavior of shape memory alloys, Arch. Mech., Vol. 40, pp. 775-794.
- X. Gao, M. Huang, L. C. Brinson, 2000, A multivariant micromechanical model for SMAs: Part I. Crystallographic issues for single crystal model, Int. J. Plasticity, Vol. 16, pp. 1345-1369. https://doi.org/10.1016/S0749-6419(00)00013-9
- T. J. Lim, D. L. McDowell, 1999, Mechanical behavior of an Ni-Ti shape memory alloy under axial-torsional proportional and nonproportional loading, J. Eng. Mater. Tech., Vol. 121, pp. 9-18. https://doi.org/10.1115/1.2816007
- X. Peng, W. Pi, J. Fan, 2008, A microstructurebased constitutive model for the pseudoelastic behavior of NiTi SMAs, Int. J. Plasticity, Vol. 24, pp. 966-990. https://doi.org/10.1016/j.ijplas.2007.08.003
- X. M. Wang, B. X. Xu, Z. F. Yue, 2008, Micromechanical modeling of the effect of plastic deformation on the mechanical behavior in pseudoelastic shape memory alloys, Int. J. Plasticity, Vol. 24, pp. 1307-1332. https://doi.org/10.1016/j.ijplas.2007.09.006
- S. Manchiraju, P. M. Anderson, 2010, Coupling between martensitic phase transformation and plasticity: A microstructure-based finite element model, in press, Int. J. Plasticity. https://doi.org/10.1016/j.ijplas.2010.01.009
- K. Tanaka, S. Nagaki, 1982, A thermomechanical description of materials with internal variable in the process of phase transitions, Ing. Arch., Vol. 51, pp. 287-299. https://doi.org/10.1007/BF00536655
- C. Liang, C. A. Rogers, 1990, One-dimensional thermomechanical constitutive relations for shape memory materials, J. Intell. Mater. Sys. Struct., Vol. 1, pp. 207-234. https://doi.org/10.1177/1045389X9000100205
- L. C. Brinson, 1993, One dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions, J. Intell. Mater. Sys. Struct., Vol. 4, pp. 229-242. https://doi.org/10.1177/1045389X9300400213
- D. C. Lagoudas, Z. Bo, 1999, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II: material characterization and experimental results for a stable transformation cycle, Int. J. Eng. Sci., Vol. 37, pp. 1205-1249. https://doi.org/10.1016/S0020-7225(98)00116-5
- W. Yan, C. H. Wang, X. P. Zhang, Y. Mai, 2003, Theoretical modeling of the effect of plasticity on reverse transformation in superelastic shape memory alloys, Mater. Sci. Eng. A, Vol. 354, pp. 146-157. https://doi.org/10.1016/S0921-5093(02)00941-3
- D. C. Lagoudas, P. B. Entchev, 2004, Modelling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys, Part I: constitutive model for fully dense SMAs, Mech. Mater., Vol., 36, pp. 865-892. https://doi.org/10.1016/j.mechmat.2003.08.006
- Q. Kan, G. Kang, 2010, Constitutive model for uniaxial transformation ratcheting of super-elastic NiTi shape memory alloy at room temperature, Int. J. Plasticity, Vol. 26, pp. 441-465. https://doi.org/10.1016/j.ijplas.2009.08.005
- A. Krausz, K. Krausz, 1996, Unified constitutive laws of plastic deformation, San Diego, Academic Press.
- K. Ho, 2001, Modeling of nonlinear rate sensitivity by using an overstress model, Comp. Model. Eng. Sci., Vol. 2, No.3, pp. 351-364.
- K. Ho, 2007, The rate dependent deformation behavior of AISI Type 304 stainless steel at room temperature, Trans. Mater. Process., Vol. 16, No.2, pp. 101-106. https://doi.org/10.5228/KSPP.2007.16.2.101
- K. Ho, 2008, Effect of the rate dependence of nonlinear kinematic hardening rule on relaxation behavior, Int. J. Solid Struct., Vol. 45, pp. 821-839. https://doi.org/10.1016/j.ijsolstr.2007.09.003
- Z. Moumni, W. Zaki, Q. S. Nguyen, 2008, Theoretical and numerical modeling of solid-solid phase change: Application to the description of the thermomechanical behavior of shape memory alloys, Int. J. Plasticity., Vol. 24, pp. 614-645. https://doi.org/10.1016/j.ijplas.2007.07.007
Cited by
- A Constitutive Model for the Rate-dependent Deformation Behavior of a Solid Polymer vol.22, pp.4, 2013, https://doi.org/10.5228/KSTP.2013.22.4.216
- An Improved Constitutive Model of Shape Memory Alloy vol.20, pp.5, 2011, https://doi.org/10.5228/KSTP.2011.20.5.350
- Prediction of Shape Recovery for Ni-Ti SMA Wire after Drawing vol.22, pp.8, 2013, https://doi.org/10.5228/KSTP.2013.22.8.470