DOI QR코드

DOI QR Code

Microstructure, Electrical Properties, and Accelerated Aging Behavior of Er-Added ZPCC-YE Varistors

  • Nahm, Choon-Woo (Semiconductor Ceramics Laboratory, Department of Electrical Engineering, Dongeui University) ;
  • Park, Jong-Hyuk (Semiconductor Ceramics Laboratory, Department of Electrical Engineering, Dongeui University)
  • Received : 2010.09.14
  • Accepted : 2010.09.20
  • Published : 2010.10.31

Abstract

The microstructure, electrical properties, and DC-accelerated aging behavior of the Zn-Pr-Co-Cr-Y-Er (ZPCC-YE) varistors were investigated for different amounts of erbium oxide ($Er_2O_3$). The microstructure consisted of zinc oxide grain and an intergranular layer ($Pr_6O_{11}$, $Y_2O_3$, and $Er_2O_3$-rich phase) as a secondary phase. The increase of $Er_2O_3$ amount decreased the average grain size and increased the sintered density. As the $Er_2O_3$ amount increased, the breakdown field increased from 5094 V/cm to 6966 V/cm and the nonlinear coefficient increased from 27.8 to 45.1. The ZPCC-YE varistors added with 0.5 to 1.0 mol% $Er_2O_3$ are appropriate for high voltage, with high nonlinearity and stability against DC-accelerated aging stress.

Keywords

References

  1. C.-W. Nahm, Solid State Commun. 141, 685 (2007) [DOI:10.1016/j.ssc.2006.12.013].
  2. L. M. Levinson and H. R. Philipp, Am. Ceram. Soc. Bull. 65, 639 (1986).
  3. T. K.Gupta, J. Am. Ceram. Soc. 73, 1817 (1990) [DOI: 10.1111/j.1151-2916.1990.tb05232.x].
  4. A. B. Alles and V. L. Burdick, J. Appl. Phys. 70, 6883 (1991) [DOI:10.1063/1.349812].
  5. A. B. Alles, R. Puskas, G. Callahan, and V. L. Burdick, J. Am. Ceram. Soc. 76, 2098 (1993) [DOI: 10.1111/j.1151-2916.1993.tb08339.x].
  6. Y.-S. Lee, K.-S. Liao, and T.-Y. Tseng, J. Am. Ceram. Soc. 79, 2379 (1996) [DOI: 10.1111/j.1151-2916.1996.tb08986.x].
  7. C.-W. Nahm, Mater. Lett. 47, 182 (2001) [DOI: 10.1016/S0167-577X(00)00262-7].
  8. C.-W. Nahm and J.-S Ryu, Mater. Lett. 53, 110 (2002) [DOI: 10.1016/S0167-577X(01)00464-5].
  9. C.-W. Nahm, B.-C. Shin, and B.-H. Min, Mater. Chem. Phys. 82, 157 (2003) [DOI: 10.1016/s0254-0584(03)00213-x].
  10. C.-W. Nahm, J. Europ. Ceram Soc. 23, 1345 (2003) [DOI: 10.1016/s0955-2219(02)00285-6].
  11. C.-W. Nahm, Mater. Lett. 58, 2252 (2004) [DOI: 10.1016/j.matlet.2004.01.029].
  12. C.-W. Nahm and B.-C. Shin, J. Mater. Sci. Mater. Electron. 16, 725 (2005) [DOI: 10.1007/s10854-005-4975-4].
  13. C.-W. Nahm, Mater. Lett. 60, 3311 (2006) [DOI: 10.1016/j.matlet.2006.05.079].
  14. C.-W. Nahm, Mater. Sci. Eng. B. 137, 112 (2007) [DOI: 10.1016/j.mseb.2006.11.009].
  15. C.-W. Nahm, J. Mater. Sci. Mater. Electron. 20, 418 (2009) [DOI: 10.1007/s10854-008-9745-7].
  16. C.-W. Nahm, Ceram. Int. 36, 1495 (2010) [DOI: 10.1016/j.ceramint.2010.02.027].
  17. J. C. Wurst and J.A. Nelson, J. Am. Ceram. Soc. 55, 109 (1972) [DOI: 10.1111/j.1151-2916.1972.tb11224.x].
  18. J. Fan and R. Freer, J. Amer. Cearm. Soc. 77, 2663 (1994) [DOI: 10.1111/j.1151-2916.1994.tb04659.x].