Extraction, Purification and Property of the lipid from Scenedesmus sp.

Scenedesmus sp.로 부터의 지방 추출, 정제 및 특성

  • Kim, Na-Young (Department of Bioengineering and Technology, Kangwon National University) ;
  • Oh, Sung-Ho (School of Biotechnology and Bioengineering, Kangwon National University) ;
  • Choi, Woon-Yong (School of Biotechnology and Bioengineering, Kangwon National University) ;
  • Lee, Hyeon-Yong (School of Biotechnology and Bioengineering, Kangwon National University) ;
  • Lee, Shin-Young (Department of Bioengineering and Technology, Kangwon National University)
  • 김나영 (강원대학교 생물공학과) ;
  • 오성호 (강원대학교 바이오산업산업공학부) ;
  • 최운용 (강원대학교 바이오산업산업공학부) ;
  • 이현용 (강원대학교 바이오산업산업공학부) ;
  • 이신영 (강원대학교 생물공학과)
  • Received : 2010.01.19
  • Accepted : 2010.08.25
  • Published : 2010.08.31

Abstract

Lipid from Scenedesmus sp. was extracted, fractionated and purified by silicic acid column chromatography. Total lipid content of extract was $21.38{\pm}1.03$ wt%, and triacylglycerol, an index lipid for biodiesel production was detected. Ten species of $C_{16}{\sim}C_{22}$ with saturated and unsaturated fatty acid were identified showing the very adequate fatty acid profiles for biodiesel production with a good flow property at low temperature. The fractions of glycolipid, neutral and phospholipid were 52.64, 28.10 and 19.26% of total lipid, respectively. The triacylglycerol of 12.63% and chlorophyll a of 49.47% was fractioned using stepwise elution of n-hexane-diethyl ether (95:5, v/v) solvent. The high content of chlorophyll was considered as a potential source of value-added co-product.

Keywords

References

  1. Joo, D. S. and E. H. Lee (1998) Searching of antimicrobial active compounds from microalgae. Korean J. Life Science 8: 173-180.
  2. Pulz, O. and W. Gross (2004) Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65: 635-648. https://doi.org/10.1007/s00253-004-1647-x
  3. Plaza, M., M. Herrero, A. Cifuentes, and E. Ibanez (2009) Innovative natural functional ingredients from microalgae. J. Agric. Food Chem. 57: 7159-7170. https://doi.org/10.1021/jf901070g
  4. Converti, A., A. A. Casazza, E. Y. Ortiz, P. Perego, M. D. Borghi (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process 48: 1146-1151. https://doi.org/10.1016/j.cep.2009.03.006
  5. Griffiths, M. J. and S. T. L. Harrison (2009) Lipid productivity as a key characteristics for choosing algal species for biodiesel production. J. Appl. Phycol. 21: 493-507. https://doi.org/10.1007/s10811-008-9392-7
  6. Becker, E. W. (1994) Microalgae: Biotechnology and Microbiology. Cambridge Univ. Press, Cambridge, UK.
  7. Miao, X. and Q. Wu (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97: 41-846.
  8. Chisti, Y. (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 26: 126-131. https://doi.org/10.1016/j.tibtech.2007.12.002
  9. Raehtz, K. (2009) Challenges and advances in making microalgae biomass a cost efficient source of biodiesel. Basic Biotech. 5: 37-43.
  10. Huang, G. H., F. Chen, D. Wei, X. W. Zhang, and G. Chen (2010) Biodiesel production by microalgal biotechnology. Appl. Energy 87: 38-46. https://doi.org/10.1016/j.apenergy.2009.06.016
  11. Schenk, P. M., S. R. Thomas-Hall, E. Stephens, U. C. Marx, J. H. Mussgnug, C. Posten, O. Kruse, and B. Hankamer (2008) Second generation biofuels: Highefficiency microalgae for biodiesel production. Bioenerg. Res. 1: 20-43. https://doi.org/10.1007/s12155-008-9008-8
  12. Campbell, M. N. (2008) Biodiesel: Algae as a renewable source for liquid fuel. Guelph Eng. J. 1: 2-7.
  13. Sharif Hossain, A. B. M., A. Salleh, A. N. Boyce, P. Chowdhury, and M. Naqiuddin (2008) Biodiesel fuel production from algae as renewable energy. Am. J. Biochem. & Biotech. 4: 250-254. https://doi.org/10.3844/ajbbsp.2008.250.254
  14. Hu, Q., M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, and A. Darzins (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant J. 54: 621-639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
  15. Ann, S. S. and K. C. Yoon (1985) Morphological variation of Scenedesmus quadricauda (Turpin) de brébisson and Scenedesmus armatus (Chodat) G. M. Smith in culture. Korean J. Bot. 28: 305-315.
  16. Lee, O. M., J. H. Ahn, and B. R. Moon (2007) A study of ten taxa of newly reported green algae (division Chlorophyta) in Korea. Korean J. Limnol. 40: 50-60.
  17. Mandal, S. and N. Mallick (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Microbiol. Biotechnol. 84: 281-291. https://doi.org/10.1007/s00253-009-1935-6
  18. Folch, J., M. Lees, and S. G. H. Sloane (1956) A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497-509.
  19. Morrison, W. R. and L. M. Smith (1964) Preparation of fatty acid methyl ester and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 5: 600-608.
  20. Sukhija, P. S. and D. L. Palmquist (1988) Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 36: 1202-1206. https://doi.org/10.1021/jf00084a019
  21. Matsunaga, T., M. Matsumoto, Y. Maeda, H. Sugiyama, R. Sato, and T. Tanaka (2009) Characterization of marine microalga, Scenedesmus sp. Biotechnol. Lett. 31: 1367-1372. https://doi.org/10.1007/s10529-009-0029-y
  22. Roiser, G., G. Kritchevsky, G. Smon, and G. J. Nelson (1967) Quantitative analysis of bran and spinach leaf lipids employing silicic acid column chromatography and acetone for elution of glycolipids. Lipids 2: 37-40. https://doi.org/10.1007/BF02531998
  23. Christie, W. W. (1982) Lipid Analysis. 2nd ed., pp. 96-98. Pergamon Press, Oxford, UK.
  24. Hannahan, D. J. (1997) A Guide to Phospholipid Chemistry. pp. 53-54. Oxford University Press, Cambridge, UK.
  25. Ben-Amotz, A., T. G. Tornabene, and W. H. Thomas (2004) Chemical profile of selected species of microalgae with emphasis on lipids. J. Phycol. 21: 72-81. https://doi.org/10.1111/j.0022-3646.1985.00072.x
  26. Greenspan, P., E. P. Mayer, and D. F. Stanley (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J. cell Biol. 100: 965-973. https://doi.org/10.1083/jcb.100.3.965
  27. Harrington, K. J. (1986) Chemical and physical properties of vegetable oil esters and their effect on diesel fuel performance. Biomass 9: 1-17. https://doi.org/10.1016/0144-4565(86)90008-9
  28. Sanchez, J. F., J. M. Fernandez, F. G. Acien, A. Rueda, J. Perez-Parra, E. Molina (2008). Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem. 43: 398-405. https://doi.org/10.1016/j.procbio.2008.01.004
  29. European Standard EN 14214 (2004) Automotive fuelsfatty acid methyl esters (FAME) for diesel engines (Biodiesels)-requirements and test methods.
  30. Kinney, A. J. and T. E. Clemente (2005) Modifying soybean oil for enhanced performance in biodiesel blends. Fuel Process. Technol. 86: 1137-1147. https://doi.org/10.1016/j.fuproc.2004.11.008
  31. Kates, M. (1988) Separation of lipid mixture. pp. 186- 278. In: Techniques of Lipdology: Isolation, Analysis and Identification of Lipids. 2nd ed., Burdon, R. H. and P. H. Van Knippenberg (eds.). Elesevier Science Publishers, Amsterdam, Netherlands.
  32. Molina Grima, E., A. Robles Medina, A. Gimenez Gimenez, J. A. Sanchez Perez, F. Garcia Camacho, and J. L. Garcia Sanchez (1994) Comparison between extraction of lipids and fatty acids from microalgal biomass. J. Am. Oil Chem. Soc. 71: 955-959. https://doi.org/10.1007/BF02542261
  33. Cartens, M., E. Molina, A. Robles, A. Gimenez, and M. J. Ibanez (1996) Eicosapentaenoic acid (20:4n-3) from the marine microalga Phaeodactylum tricornutum. J. Am. Oil Chem. Soc. 73: 1025-1031. https://doi.org/10.1007/BF02523411
  34. Trurnit, H. J. and G. Colmano (1959) Chloroplast studies. I. Absorption spectra of chlorophyll monolayers at liquid interfaces. Biochim. Biophys. Acta. 31: 434-471. https://doi.org/10.1016/0006-3002(59)90018-6
  35. Mortensen, A. (2006) Carotenoids and other pigments as natural colorants. Pure Appl. Chem. 78: 1477-1491. https://doi.org/10.1351/pac200678081477
  36. Brocklehurst, J. C. (1953) An assessment of chlorophyll as a deodorant. Br. Med. J. 1: 541-543. https://doi.org/10.1136/bmj.1.4809.541
  37. Mabe, G. P. I. and S. A. de C. V. (2005) Use of chlorophyll for controlling unpleasant odors in disposable absorbent articles. EP 1 543 847 A1.
  38. Dashwood, R., T. Negishi, H. Hayatsu, V. Breinholt, J. Hendricks, and G. Bailey (1998) Chemopreventive properties of chlorophylls towards aflatoxin B1: a review of the antimutagenicity and anticarcinogenicity data in rainbow trout. Mutat. Res. 399: 245-253. https://doi.org/10.1016/S0027-5107(97)00259-5
  39. Ferruzzi, M. G., V. Bohm, P. D. Courtney, and S. J. Schwartz (2002) Antioxidant and antimutagenic activity of dietary chlorophyll derivatives determined by radical scavenging and bacterial reverse mutagenesis assays. J. Food Sci. 67: 2589-2595. https://doi.org/10.1111/j.1365-2621.2002.tb08782.x
  40. Lanfer-Marquez, U. M., R. M. C. Barros, and P. Sinnecker (2005) Antioxidant activity of chlorophylls and their derivatives. Food Research International 38: 885-891. https://doi.org/10.1016/j.foodres.2005.02.012