Ethanol Production with Glucose/Xylose Mixture by Immobilized Pichia stipitis

고정화 Pichia stipitis 를 이용한 글루코오스/자일로오스 혼합당으로부터 에탄올 생산

  • Shin, Hyun-Seok (Department of Chemical and Biological Engineering, Korea University) ;
  • Kang, Seong-Woo (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Sang-Jun (Department of Chemical and Biological Engineering, Korea University) ;
  • Jang, Eun-Ji (Department of Chemical and Biological Engineering, Korea University) ;
  • Suh, Young-Woong (Korea Institute of Science and Technology, Clean Energy Center) ;
  • Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
  • 신현석 (고려대학교 화공생명공학과) ;
  • 강성우 (고려대학교 화공생명공학과) ;
  • 이상준 (고려대학교 화공생명공학과) ;
  • 장은지 (고려대학교 화공생명공학과) ;
  • 서영웅 (한국과학기술연구원 청정에너지기술센터) ;
  • 김승욱 (고려대학교 화공생명공학과)
  • Received : 2010.05.14
  • Accepted : 2010.08.09
  • Published : 2010.08.31

Abstract

To increase the production of ethanol by using sugar from lignocellulosic biomass, pentose and hexose have to be fermented simultaneously by yeast. The effects of mixed sugar and nitrogen on ethanol production by immobilized Pichia stipitis KCCM 12009 were investigated. When optimal mixed sugar and nitrogen concentration were 5% (Glucose/Xylose = 3:1) and 1%, respectively, ethanol concentration produced by immobilized P. stipitis was 19-20 g/L. In repeated fed-batch by immobilized P. stipitis, all glucose was consumed very quickly at 1-3% mixed sugar concentration. But, xylose consumption was decreased as the mixed sugar concentration increased. Also, ethanol (5.6 g/L) was stably produced and ethanol production rate was 0.13 g/$L{\cdot}h$ in immobilized cell reactor (ICR) with 1% mixed sugar (Glucose/Xylose = 3:1) as feeding media.

리르노셀룰로오스로부터 생산된 글루코오스와 자일로 오스의 혼합당을 동시에 발효하여 에탄올 생산을 증가시키며, 또한 에탄올 생산에서의 세포고정화의 영향과 ICR (immobilized cell reactor)을 이용한 혼합당에서의 에탄올 연속생산을 수행하였다. 고정화 P. stipitis를 이용한 플라스크에서 에탄올을 생산에 대한 혼합당과 질소원의 영향으로부터 5% 혼합당 (글루코오스/자일로오스 = 3:1)과 1% 질소원이 최적으로 타나났으며, 이때 생산된 에탄올 농도는 약 19-20 g/L이었다. 고정화된 P. stipitis을 이용하여 반복적 유가식배양 (repeated fed-batch)으로 에탄올을 생산하였을 때는 모든 당 농도에서 글루코오스는 빠르게 소비되었지만, 혼합당의 농도가 높아질수록 자일로오스의 소비속도는 점차적으로 감소하였다. 즉 혼합당 농도가 증가하면서 더불어 당 소비속도는 감소하였다. 또한 ICR에서 1% 혼합당을 연속적으로 공급하면서 에탄올을 안정적으로 생산하여, 에탄올 농도는 5.6 g/L이었고 에탄올 생산 속도는 0.13 g/$L{\cdot}h$이었다.

Keywords

References

  1. Jeffries, T. W. and Y. S. Jin (2006) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63: 495-509.
  2. Ingram, L. O., H. C. Aldrich, A. C. Borges, T. B. Causey, A. Martinez, F. Morales, A. Saleh, S. A. Underwood, L. P. Yomano, S. W. York, J. Zaldivar, and S. Zhou (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol. Prog. 15: 855-866. https://doi.org/10.1021/bp9901062
  3. Perez, J., J. Munoz-Dorado, T. de la Rubia, and J. Martinez (2004) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. Microbiol. 5: 53-63.
  4. Zaldivar, J., J. Nielsen, and L. Olsson (2002) Fuel ethanol production from lingocellulose: a challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. 56: 17-34.
  5. Aristidou, A. and M. Penttila (2000) Metabolic engineering applications to renewable resource utilization. Curr. Opin. Biotechnol. 11: 187-198. https://doi.org/10.1016/S0958-1669(00)00085-9
  6. Klinke, H. B., A. B. Thomsen, and B. K. Ahring (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 66: 10-26. https://doi.org/10.1007/s00253-004-1642-2
  7. Kuyper, M., M. M. Hartog, M. J. Toirkens, M. J. Almering, A. A. Winkler, J. P. van Dijken, and J. T. Pronk (2005) Metabolic engineering of a xylose isomerase expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 5: 399-409. https://doi.org/10.1016/j.femsyr.2004.09.010
  8. Gardonyi, M. and B. Hahn-Hagerdal (2003) The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzyme Microb. Technol. 32: 252-259. https://doi.org/10.1016/S0141-0229(02)00285-5
  9. Toivola, A., D. Yarrow, E. Van den Bosch, J. P. van Dijken, and W. A. Scheffers (2004) Ethanolic fermentation of D-xylose by yeasts. Appl. Environ. Microbiol. 47: 1221-1223.
  10. Kang, S. W., Y. S. Park, J. S. Lee, S. I. Hong, and S. W. Kim (2004) Production of cellulases and hemicellulases by Aspergilus niger KK2 from lignocellulosic biomass. Bioresour. Technol. 91: 153-156. https://doi.org/10.1016/S0960-8524(03)00172-X
  11. Agbogbo, F. K., C. K. Guillermo, T. S. Mads, and S. W. Kevin (2006) Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochem. 41: 2333-2336. https://doi.org/10.1016/j.procbio.2006.05.004